[1]
B. Fischer. Modellierung zeitabh¨aniger Magnetfelder in Kristallz¨uchtungsanordnungen. PhD thesis, Friedrich-Alexander-Universit¨at-Erlangen-N¨urnberg, (2001).
Google Scholar
[2]
M.C. Flemmings and G.E. Nereo. Macrosegregation, part i. Trans. AIME, 239: 1449-1461, (1967).
Google Scholar
[3]
M. Hainke. Computation of Convection and Alloy Solidification with the Software Package CrysVUn. PhD thesis, Friedrich-Alexander-Universit"at-Erlangen-N"urnberg, (2004).
Google Scholar
[4]
M. Hainke, J. Friedrich, and G. M¨uller. Numerical study on directional solidification of alsi alloys with rotating magnetic fields under microgravity conditions. Journal of Materials Science, 39: 2011-2015, (2004).
DOI: 10.1023/b:jmsc.0000017762.16763.2b
Google Scholar
[5]
M. Kurz. Development of CrysVUN++, a Software System for Numerical Modelling and Control of Industrial Growth Processes. PhD thesis, Friedrich-Alexander-Universit"at-Erlangen-N"urnberg, (1998).
Google Scholar
[6]
R. Moreau. Magnethydrodynamics. Kluwer Academic Press, (1990).
Google Scholar
[7]
J.K. Roplekar and J.A. Dantzig. A study of solidification with a rotating magnetic field. International Journal of Cast Metals Research, 14: 79-95, (2001).
DOI: 10.1080/13640461.2001.11819428
Google Scholar
[8]
Y. Stry, M. Hainke, and Th. Jung. Comparison of linear and quadratic shape functions for hybrid control-volumen finite element method. International Journal for Numerical Methods for Heat and Fluid Flow, 12(8): 1009-1031, (2002).
DOI: 10.1108/09615530210448732
Google Scholar
[9]
A. Weiß, G. Zimmermann, R. Salber, and Z. Mbaya. Microstructural development in solidification of al-si-alloys under magnetically controlled flow conditions. In Proceedings of 4th International Conference on Electromagnetic Processing of Materials, pages 423-428, Lyon, France, October 2003. This article was processed using the LATEX macro package with TTP style.
Google Scholar