High Temperature Chemical Interaction Between SiO2 Substrates and Ag-Cu Based Liquid Alloys in Vacuo

Article Preview

Abstract:

The interfaces formed between vitreous or thermally devitrified fused quartz substrates and silver alloys after 90 min at 850 °C in vacuum have been characterized. Three silver alloys have been used: Cusil (Ag–28 wt % Cu), Cusil-ABA (Ag–35 wt % Cu–1.5 wt % Ti), and Incusil-ABA (Ag–27 wt % Cu–12 wt % In–2 wt % Ti). A non wetting condition is found for the Cusil alloy in both substrates. In contrast, the formation of Ti5Si3, Cu3Ti3O and Ti2O3, following the sequence SiO2 → Ti2O3 → Ti5Si3 → Cu3Ti3O, is observed at the metal/ceramic interface for the two titaniumcontaining alloys on both substrates. Ti2O3 is commonly found as small particles dispersed in a silver-rich matrix. During the experiments, the reaction product layers detach from the ceramic surface and float away from the ceramic/metal interface due to their relatively low density with respect to the liquid alloy. The formation of the phases detected at the ceramic/metal interface can be explained in terms of their relative thermodynamic stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Ervin: J. Am. Ceram. Soc., Vol. 41 (1958), p.347.

Google Scholar

[2] K.L. Luthra: J. Am. Ceram. Soc., Vol. 74 (1991), p.1095.

Google Scholar

[3] A.H. Heuer, L.U. Ogbuji and T.E. Mitchell: J. Am. Ceram. Soc., Vol. 63 (1980), p.354.

Google Scholar

[4] L.U. Ogbuji: J. Mater. Sci., Vol. 16 (1981), p.2753.

Google Scholar

[5] J. -G. Li: Mater. Lett., Vol. 18 (1994), p.291.

Google Scholar

[6] L. Froyen and A. Deruyttere: Proc. 4th Eur. Symp. on Materials Sciences under Microgravity (ESA, Noordwijk aan Zee, The Netherlands 1983).

Google Scholar

[7] J.C. Lee, J.P. Ahn, Z. Shi,Y. Kim and H.I. Lee: Metall. Mater. Trans., Vol. 31A (2000), p.2361.

Google Scholar

[8] Z. Shi, J. -M. Yang, J.C. Lee, D. Zhang, H.I. Lee and R. Wu: Mater. Sci. Eng. A, Vol. A303 (2001), p.46.

Google Scholar

[9] V. Laurent, D. Chatain and N. Eustathopoulos: Mater. Sci. Eng. A, Vol. A135 (1991), p.89.

Google Scholar

[10] J. López-Cuevas, H. Jones and H.V. Atkinson: J. Am. Ceram. Soc., Vol. 83 (2000), p.2913.

Google Scholar

[11] J. Lopez-Cuevas, H. Jones and H.V. Atkinson: Mater. Sci. Eng. A, Vol. A266 (1999), p.161.

Google Scholar

[12] K. Klein and L. Verheyden: J. Sci. Instrum., Vol. 44 (1967), p.174.

Google Scholar

[13] K. Klein and L. Verheyden: J. Sci. Instrum., Vol 44 (1967), p.1059.

Google Scholar

[14] L. Verheyden, K. Klein and H. Kind: J. Sci. Instrum., (J. Phys. E) Vol. 1 (1968), p.145.

Google Scholar

[15] K. Klein and L. Verheyden: Special Ceramics, Vol. 5 (1970), p.235.

Google Scholar

[16] J. López-Cuevas: Ph.D. Thesis (Sheffield University, UK 1995).

Google Scholar

[17] G. P. Kelkar and A. H. Carim: J. Amer. Ceram. Soc., Vol. 76 (1993), p.1815.

Google Scholar

[18] Y-S. Chung and T. Iseki: J. Ceram. Soc. Jap., Vol. 98 (1990), p.573.

Google Scholar

[19] R. Sangiorgi, M.L. Muolo and A. Passerone: Act. Metall., Vol. 30 (1982), p.1597.

Google Scholar

[20] R. Sangiorgi, M. L. Muolo and A. Passerone: Rev. Intern. Hautes Tempér. Réfrac., Vol. 22 (1985), p.175.

Google Scholar

[21] R. Sangiorgi, A. Passerone and R. Minisini: Surfaces and Interfaces in Ceramic and CeramicMetal Systems (Plenum Press, USA 1981).

Google Scholar

[22] R. Beyers: J. Appl. Phys., Vol. 56 (1984), p.147.

Google Scholar

[23] D. V. Hoanh, G. Krabbes and R. Krausze: Z. Anorg. Allg. Chem., Vol. 558 (1988), p.41.

Google Scholar

[24] JANAF Thermochemical Tables, 2nd ed. (National Bureau of Standards, USA 1971).

Google Scholar

[25] Thermochemical Properties of Inorganic Substances, 2nd ed. (Springer-Verlag, Berlin 1991).

Google Scholar

[26] G. P. Kelkar, K. E. Spear and A. H. Carim: J. Mater. Res., Vol. 9 (1994), p.2244.

Google Scholar