Nanosized Titanium Oxynitride and Molybdenum Oxynitride Particles Assembled in Mesoporous Silica MCM-41

Article Preview

Abstract:

Titanium oxynitride and molybdenum oxynitride assembled in the pores of mesoporous materials were achieved by nitriding titania-modified MCM-41 and molybdena-modified MCM-41 at 800°C for 3 hours under flowing NH3 atmosphere. XRD, XPS and N2 adsorption-desorption isotherms were employed to characterize the structure of the composite materials. The results showed that the nanosized TiOxNy and MoOxNy particles were assembled in mesoporous silica MCM-41 with the restrict mesopores. The hexagonal periodicity of the parent MCM-41 materials was maintained upon assembly at the provided nitridation temperature. The exact formation was TiO0.4N0.8 in MCM-TiOxNy, and MoO1.7N0.57 in MCM-MoOxNy, which were calculated from the data in XPS spectra of Ti 2p and Mo 3d.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 510-511)

Pages:

138-141

Citation:

Online since:

March 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck: Nature Vol. 359 (1992), p.710.

Google Scholar

[2] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. -W. Chu, D. H. Olsen, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker: J. Am. Chem. Soc. Vol. 114 (1992), p.10834.

DOI: 10.1021/ja00053a020

Google Scholar

[3] A. Stein, B. J. Melde and R. C. Schroden: Adv. Mater. Vol. 12 (2000), p.1403.

Google Scholar

[4] Q. Zhang, L. Gao and J. Guo: Appl. Catal. B: Environ. Vol. 26 (2000), p.207.

Google Scholar

[5] A. Corma, A. Martinez, V. Martinezsoria and J. B. Monton: J. Catal. Vol. 153 (1995), p.25.

Google Scholar

[6] J. A. Schottenfeld, A. J. Benesi, P. W. Stephens, G. Chen, P. C. Eklund and T. E. Mallouk: J. Sold State Chem. Vol. 178 (2005), p.2313.

Google Scholar

[7] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: Science Vol. 293, p.269.

Google Scholar

[8] S. Zheng, L. Gao, Q. Zhang and J. Guo: J. Mater. Chem. Vol. 10, p.723.

Google Scholar

[9] Z. Li, L. Gao and S. Zheng: Mater. Lett. Vol. 57, p.4605.

Google Scholar

[10] K. Lou, T. P. St. Clair, X. Lai and D. W. Goodman: J. Phys. Chem. B Vol. 104 (2000), p.3050.

Google Scholar

[11] W. Grünert, A. Y. Stakheev, R. Feldhaus, K. Anders, E. S. Shpiro and K. M. Minachev: J. Phys. Chem., Vol. 95 (1991), p.1323.

Google Scholar

[12] Z. H. Luan, J. Xu and L. Kevan: Chem. Mater. Vol. 10 (1998), p.3699.

Google Scholar

[13] J. E. Haskouri, S. Cabrera, F. Sapiña, J. Latorre, C. Guillem, A. Beltrán-Porter, D. Beltrán-Porter, M. D. Marcos and P. Amorós: Adv. Mater. Vol. 13 (2001), p.192.

DOI: 10.1002/1521-4095(200102)13:3<192::aid-adma192>3.0.co;2-m

Google Scholar