Formation of Ultra Fine Ferrite and Determination of Critical Strain in the Strain Induced Dynamic Transformation for 0.22C-Mn Steel

Abstract:

Article Preview

The low carbon steel of 0.22wt% carbon was tested to estimate the dynamic phase transformation behavior from austenite to ferrite. The samples were deformed at just above Ar3 temperature by hot torsion at condition of strain rate (0.5/sec) and strain (5.0). The flow curve obtained at just above Ar3 significantly differed from others due to dynamic transformation. Based on the analysis of flow stress curve and observation of micro-structure evolution, the initiation and finish points of strain induced dynamic transformation (SIDT) could be determined. An inflection point observed at early deformation range (0.2–0.3) from the work-hardening rate and stress plot meant that new ferrite grains were nucleated in austenite matrix and these nuclei could be also confirmed by optical microscope. Subsequently in strain range of 0.7-1.0, the flow stress had the maximum value and new fine ferrite grains were dynamically generated inside untransformed austenite grains as well as prior austenite grains. The dynamic phase transformation induced by deformation made eventually fine ferrite grains under 3 ㎛ and decreased stress level with a fixed gradient.

Info:

Periodical:

Materials Science Forum (Volumes 510-511)

Edited by:

Hyung Sun Kim, Yu Bao Li and Soo Wohn Lee

Pages:

514-517

DOI:

10.4028/www.scientific.net/MSF.510-511.514

Citation:

S. M. Lee et al., "Formation of Ultra Fine Ferrite and Determination of Critical Strain in the Strain Induced Dynamic Transformation for 0.22C-Mn Steel", Materials Science Forum, Vols. 510-511, pp. 514-517, 2006

Online since:

March 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.