Change of Interlayer Exchange Coupling between the Adjacent Magnetic Transition Metal Layers across a Rare-Earth Metal Layer by Hydrogenation

Article Preview

Abstract:

We have studied the change of the interlayer exchange coupling between the adjacent magnetic transition metal (TM) layers across a rare-earth metal (REM) layer by hydrogenation in TM (10 nm)/REM (t nm)/TM (10 nm) trilayers composed of Fe and Co as the TM and Y as the REM. In the case of the Fe as TM, the magnetic properties are sensitive to hydrogenation. In particular, the interlayer exchange coupling changes remarkably by hydrogenation. On the other hand, in the case of the Co as TM, the magnetic properties do not change by hydrogenation, and the change of the coupling by hydrogenation cannot be confirmed. The difference of the change of the coupling by hydrogenation between TM=Fe and TM=Co should be attributed to the difference of the TM/Y interface state.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-182

Citation:

Online since:

April 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Vjada: Handbook on the Physics and Chemistry of Rare Earths Vol. 20 (Elsevier, Amsterdam, 1995) p.207.

Google Scholar

[2] M. Münzenberg, M. Arend, W. Felsch, S. Pizzini, A. Fontaine, T. Neisius and S. Pascarelli: J. Magn. Magn. Mater. Vol. 220 (2000) p.195.

DOI: 10.1016/s0304-8853(00)00513-8

Google Scholar

[3] W. Lohstroh, F. Leuenberger, W. Felsch, H. Fritzche and H. Maletta: J. Magn. Magn. Mater. Vol. 237 (2001) p.77.

Google Scholar

[4] Y. Kamada, A. Itoh and M. Yamamoto: Proc. of Fourth Pacific Rim Inter. Conf. on Adv. Mater. & Proc. (2001) p.127. rms = 0. 20 nm rms = 0. 65 nm (a) TM=Fe (b) TM=Co.

Google Scholar

[5] Y. Kamada, D. Takama, A. Itoh, H. Naka and M. Yamamoto: Proc. of Fourth Pacific Rim Inter. Conf. on Adv. Mater. & Proc. (2001) p.425.

Google Scholar

[6] Y. Kamada, A. Itoh, D. Takama and M. Yamamoto: Trans. Magn. Soc. Jpn. Vol. 2 (2002) p.69.

Google Scholar

[7] N. Jaouen, J. M. Tonnerre, D. Raoux, E. Bontempi, L. Ortega, M. Münzenberg, W. Felsch, A. Rogalev, H. A. Dürr, G. van der Lann, H. Maruyama and M. Suzuki: Phys. Rev. B Vol. 66 (2002) p.134420.

DOI: 10.1007/s003390100966

Google Scholar

[8] Y. Endo, D. Takama, M. Yamamoto, T. Suenobu and S. Fukuzumi: Jpn. J. Appl. Phys. Vol. 42 (2003) p. L291.

DOI: 10.1143/jjap.42.l291

Google Scholar

[9] Y. Endo, K. Matsuura, M. Yamamoto, Y. Kamada, A. Itoh, T. Suenobu and S. Fukuzumi: Sci. Tech. Adv. Mater. Vol. 5 (2004) p.95.

Google Scholar

[10] Y. Endo, D. Takama, M. Yamamoto, T. Suenobu and S. Fukuzumi: Jpn. J. Appl. Phys. Vol. 43 (2004) in press.

Google Scholar

[11] J. F. Cochran, B. Heinrich and A. S. Arrott: Phys. Rev. B Vol. 34 (1986) p.7788.

Google Scholar

[12] B. Heinrich, S. T. Purcell, J. R. Dutcher, K. B. Urquhart, J. F. Cochran and A. S. Arrott: Phys. Rev. B Vol. 38 (1988) p.12879.

DOI: 10.1103/physrevb.38.12879

Google Scholar

[13] S. Chikazumi: Physics of Ferromagnetism (Oxford University Press, New York, 1997) p.634.

Google Scholar

[14] L. Néel: CR Acad. Sci. Vol. 255 (1962) p.1545.

Google Scholar