Organically Modified Silica-Based Xerogels Derived from 3-Aminopropyltrimethoxysilane and 3-Isocyanatepropyltriethoxysilane through Carboxylic Acid Solvolysis

Article Preview

Abstract:

Organically-modified silica xerogels from 3-aminopropyltrimethoxysilane (APTES) and 3-isocyanatepropyltriethoxysilane (ICPTES) have been synthesized through carboxylic acid (formic acid, acetic acid and valeric acid) solvolysis. The resulting hybrid materials have been characterized by powder X-ray diffraction, mid-infrared spectroscopy, 29Si and 13C nuclear magnetic resonance, and photoluminescence spectroscopy. The results show that urea cross-links have been formed in these hybrids. The luminescence features depend on the selected carboxylic acids. For example, comparatively to the hybrids derived from formic and acetic acid solvolysis, valeric acid shows a red-shift of the emission features.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 514-516)

Pages:

108-112

Citation:

Online since:

May 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.J. Garcia, M.A. Mondragon, C. Tellez, A. Campero, V.M. Castano: Mater. Chem. Phys. Vol. 41 (1995), p.15.

Google Scholar

[2] S. Okuzaki, K. Okude, T. Ohishi: J. Non-Cryst. Solids Vol. 265 (2000), p.61.

Google Scholar

[3] M.R. Ayers, A.J. Hunt: J. Non-Cryst. Solids Vol. 217 (1997), p.229.

Google Scholar

[4] L.D. Carlos, R.A. Sá Ferreira, V. de Zea Bermudez and S.J.L. Ribeiro: Adv. Funct. Mater. Vol. 11 (2001), p.111.

Google Scholar

[5] J. Lin, K. Baerner: Mater. Lett. 46 (2000), p.86.

Google Scholar

[6] Y.H. Han, J. Lin, H.J. Zhang: Mater. Lett. Vol. 45 (2002), p.389.

Google Scholar

[7] L.D. Carlos, R.A. Sá Ferreira, V. de Zea Bermudez: Light Emission From Organic-Inorganic Hybrids Lacking Activator Centers in Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites (American Scientific Publishers, USA 2003).

DOI: 10.1021/jp0668448

Google Scholar

[8] W.H. Green, K.P. Le, J. Grey, T.T. Au, M.J. Sailor: Science Vol. 276 (1997), p.1826.

Google Scholar

[9] V. Bekiari, P. Lianos: Langmuir Vol. 14 (1998), p.3459.

Google Scholar

[10] V. de Zea Bermudez, L.D. Carlos, M.C. Duarte, M.M. Silva, C.J.R. Silva, M.J. Smith, M. Assunção, L. Alcácer: J. Alloys & Comp. Vol. 275-277 (1998), p.21.

DOI: 10.1016/s0925-8388(98)00266-7

Google Scholar

[11] V. Bekiari, P. Lianos, U.L. Stangar, B. Orel, P. Judeinstein: Chem. Mater. Vol. 12 (2000), p.3095.

DOI: 10.1021/cm0010598

Google Scholar

[12] L.S. Fu, R.A. Sá Ferreira, N.J.O. Silva, L.D. Carlos, V. de Zea Bermudez, J. Rocha: Chem. Mater. Vol. 16 (2004), p.1507.

Google Scholar

[13] Y.H. Han, J. Lin and H.J. Zhang: Mater. Lett. Vol. 54 (2002), p.389.

Google Scholar

[14] L.D. Carlos, R.A. Sá Ferreira, R.N. Pereira, M. Assunção and V. de Zea Bermudez, J. Phys. Chem. B Vol. 108 (2004).

Google Scholar