Regeneration of Adsorbent Carbonaceous Materials with Supercritical Water

Abstract:

Article Preview

The aim of this work was to study a new procedure for the regeneration of activated carbon saturated with phenol. The study was accomplished in two steps: extraction of the pollutant with supercritical water at 410 °C and 275 bar, and gasification of phenol with supercritical water at temperatures ranging between 600 - 650 °C. It was observed that the regeneration process was very rapid and effective. The regenerated activated carbon always recovered its original adsorption capacity, even after several regeneration cycles. The gasification of phenol afforded CO2 and H2O, with a very fast first-order kinetic process. The activation energy was very low (0.192 kJ mol-1).

Info:

Periodical:

Materials Science Forum (Volumes 514-516)

Edited by:

Paula Maria Vilarinho

Pages:

1742-1747

DOI:

10.4028/www.scientific.net/MSF.514-516.1742

Citation:

M.J. Sánchez-Montero et al., "Regeneration of Adsorbent Carbonaceous Materials with Supercritical Water", Materials Science Forum, Vols. 514-516, pp. 1742-1747, 2006

Online since:

May 2006

Export:

Price:

$35.00

[1] Loven, A.W., Chem. Eng. Progr., 69, 56 (1973).

[2] Moreno, C., Rivera, J., Joly, J.P., López, M.V., Ferro, M.A., and Carrasco, F., Carbon, 33, 1417 (1995).

[3] San Miguel, G., Lambert, S.D., and Graham, N.J.D., Appl. Catalusis B: Environmental, 40, 185 (2003).

[4] San Miguel, G., Lambert, S.D., and Graham, N.J.D., Wat. Res., 35, 2740 (2001).

[5] Shweiger, T.A.J., and Douglas LeVan, M., Ind . Eng. Chem. Res., 32, 2418 (1993).

[6] Salvador, F, and Sánchez-Jiménez, C., Carbon, 34, 511 (1996).

[7] Salvador, F, and Sánchez-Jiménez, C., Carbon, 37, 577 (1999).

[8] Ehrhardt, H.M., and Rehm, H.J., Appl. Microbiol. Biotechnol., 30, 312 (1989).

[9] Voice, T.C., Pack, D., Zhao, X., Shi, J., and Hickey, R.F., Wat. Res., 26, 1389 (1992).

[10] Matatov-Meytal, Y.I., and Sheintuch, M., Catalysis Today., 53, 73 (1999).

[11] Mishra, V.S., Mahajani, V.V., and Joshi, J.B., Ind . Eng. Chem. Res., 34, 2 (1995).

[12] Narbaitz, R.M., and Cen, J., Wat. Res., 28(8), 1771 (1994).

[13] Comninellis, C., and Nerine, A., J. Appl. Electrochem., 25(1), 23 (1995).

[14] De Philippi, R.P., Krukonis, V.J. and Robey, R.J., EPA, (1980).

[15] Chihara, K., Oomori, K., and Mochizuki, Y., Wat. Sci. Tech., 35, 261 (1997).

[16] F. Salvador, C. Sánchez, Spain Patent 2127113; EU Patent 818240; USA Patent 5. 998. 324.

[17] Moreno, C., Rivera, J., López, M.V., and Carrasco, F., Carbon, 33, 845 (1995).

[18] Leng, C-C., and Pinto, N.G., Carbon, 35, 1375 (1997).

[19] Franz, M., Arafaf, M.A., Pinto, N.G. Carbon. 38, 1807, (2000).

[20] Moreno-Castilla, C., Carbon, 42, 83 (2004). 0 0. 4 0. 8 1. 2 1. 6 2 1. 08 1. 10 1. 12 1. 14 1. 16 103 1/T(K -1) lnkexp/s-1.

[21] Modell, M., de Filippi, R.P., and Krukonis V.J., Ann Arbor Science, vol. I, 447 (1980).

[22] Kander, R.G., Paulaitis, M.E., In Chemical Engineering and Supercritical Conditions; Penninger, J.M.L., Gray, R.D., Davidson, P., Eds.; Ann Arbor Science, 461 (1983).

[23] Chung-Sung T., and Din-Chung, L., Ind . Eng. Chem. Res., 28, 1222 (1989).

In order to see related information, you need to Login.