Composition Dependent Resonant Raman Scattering in Al0.33Ga0.67As/InxGa1-xAs1-yNy Multiquantum Wells

Abstract:

Article Preview

InxGa1-xAs1-yNy/Al0.33Ga0.67As multiquantum wells grown by plasma-assisted molecular beam epitaxy are studied by resonant inelastic light scattering. Sharp vibration modes have been observed at 323, 402, 454 and 501 cm-1. Their intensities resonate at the barrier bandgap reduced by the presence of N. Their resonance energies reveal the influence of the N concentration on the barrier gap at the multiquantum well interfaces. These peaks are interpreted in terms of local vibrations involving the pairing of N atoms, which seems to occur mostly at the quantum well interfaces due to preferential bonding of N to Al.

Info:

Periodical:

Edited by:

Dragan P. Uskokovic, Slobodan K. Milonjic and Dejan I. Rakovic

Pages:

17-22

DOI:

10.4028/www.scientific.net/MSF.518.17

Citation:

S. Lazić et al., "Composition Dependent Resonant Raman Scattering in Al0.33Ga0.67As/InxGa1-xAs1-yNy Multiquantum Wells", Materials Science Forum, Vol. 518, pp. 17-22, 2006

Online since:

July 2006

Export:

Price:

$35.00

[1] J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz and B.M. Keyes: J. Cryst. Growth Vol. 195 (1998), p.401; M. Kondow, S. Nakatsuka, T. Kitatani, Y. Yazawa and M. Okai: Jpn. J. Appl. Phys. Part 1 Vol. 35 (1996), p.5711.

[2] M. Weyers, M. Sato and H. Ando: Jpn. J. Appl. Phys. Part 1 Vol. 31 (1992), p. L853.

[3] W. Shan, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz and C. Nauka: Phys. Rev. B Vol. 62 (2000), p.4211.

DOI: 10.1103/physrevb.62.4211

[4] J. Wagner, T. Geppert, K. Köhler, P. Ganser and M. Maier: Appl. Phys. Lett. Vol. 83 (2003), p.2779.

[5] P.R.C. Kent and A. Zunger: Phys. Rev. Lett. Vol. 86 (2001), p.2613; Phys. Rev. B Vol. 64 (2001), p.115208.

[6] K. Kim and A. Zunger: Phys. Rev. Lett. Vol. 86 (2001), p.2609.

[7] P. Carrier, S. -H. Wei, S.B. Zhang and S. Kurtz: Phys. Rev. B Vol. 71 (2005), p.165212.

[8] H.C. Alt, A.Y. Egorov, H. Riechert, B. Wiedemann, J.D. Meyer, R.W. Michelmann and K. Bethege: Appl. Phys. Lett. Vol. 77 (2000), p.3331.

[9] S. Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Oslon, R. King, D. Joslin and N. Karam: Appl. Phys. Lett. Vol. 78 (2001), p.748.

[10] H. Ch. Alt and Y.V. Gomeniuk: Phys. Rev B Vol. 70 (2004), p.161314(R).

[11] A. Mascarenhas, M.J. Seong, S. Yoon, J.C. Verley, J.F. Geisz and M.C. Hanna: Phys. Rev. B Vol. 68 (2003), p.233201.

[12] J. Wagner, T. Geppert, K. Köhler, P. Ganser and N. Herres: J. Appl. Phys. Vol. 90 (2001), p.5027.

[13] H.M. Cheong, Y. Zhang, A. Mascarenhas and J.F. Geisz: Phys. Rev. B Vol. 61 (2000), pp.013-687.

[14] G. Bachelier, A. Mlayah, M. Cazayous, J. Groenen, A. Zwick, H. Carrère, E. Bedel-Pereira, A. Arnoult, A. Rocher and A. Ponchet: Phys. Rev. B Vol. 67 (2003), p.205325.

DOI: 10.1103/physrevb.67.205325

[15] P.A. Grandt, A.E. Griffith, M.O. Manasreh, D.J. Friedman, S. Doğan and D. Johnstone: Appl. Phys. Lett. Vol. 85 (2004), p.4905.

[16] R. Hey, Y.J. Han, M. Giehler, M. Ramsteiner, H.T. Grahn and K.H. Ploog: J. Cryst. Growth Vol. 278 (2005), p.219; M. Ramsteiner, P. Kleinert, R. Hey and K.H. Ploog: (to be published).

DOI: 10.1016/j.jcrysgro.2004.12.058

[17] X. Liu, M.E. Pistol and L. Samuelson: Phys. Rev B Vol. 42 (1990), p.7504.

[18] J. Wagner, T. Geppert, K. Köhler, P. Ganser and M. Maier: Solid-State Electron. Vol. 47 (2003), p.461.

[19] T. Geppert, J. Wagner, K. Köhler, P. Ganser and M. Maier: Appl. Phys. Lett. Vol. 80 (2002), p. (2081).

[20] T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst, M. Krisch, M. D'Astuto T. Suski, I. Grzegory and M. Leszczynski: Phys. Rev. Lett. Vol. 86 (2001), p.906.

DOI: 10.1103/physrevlett.86.906

[21] N. Wieser, O. Ambacher, H. Angerer, R. Dimitrov, M. Stutzmann, B. Stritzker and J.K.N. Lindner: Phys. Stat. Sol. (b) Vol. 216 (1997), p.807.

In order to see related information, you need to Login.