Synthesis and Characterization of Branched Sulfonated Poly(ether Sulfone-Ketone) Copolymer and Organic-Inorganic Nano Composite Membranes

Article Preview

Abstract:

Branched sulfonated poly(ether sulfone-ketone) copolymer was prepared with bisphenol A, 4,4-difluorobenzophenone, sulfonated chlorophenyl sulfone (40mole% of bisphenol A) and THPE (1,1,1-tris-p-hydroxyphenylethane) as a branching agent. THPE was used 0.4 mol% of bisphenol A to synthesize branched copolymers. Organic-inorganic nano composite membranes were prepared with copolymer and a series of SiO2 nanoparticles (20 nm, 4, 7 and 10 wt%). The composite membranes were cast from dimethylsulfoxide solutions. The films were converted from the salt to acid forms with dilute hydrochloric acid. The membranes were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. Branched copolymer and nano composite membranes exhibited proton conductivities from 1.12x10-3 to 6.04x10-3 S/cm2, water uptake from 52.9 to 62.4%, IEC from 0.81 to 1.21 meq/g and methanol diffusion coefficients from 1.2x10-7 to 1.5x10-7 cm2/S.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 534-536)

Pages:

121-124

Citation:

Online since:

January 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt and C. Rogers: J. Electrochem. Soc., Vol. 141, (1994), p.46.

DOI: 10.1149/1.2054875

Google Scholar

[2] G. Alberti, M. Casciola, L. Massinelli and B. Bauer: J. Membr. Sci., Vol. 185, (2001), p.73.

Google Scholar

[3] C. Yang, P. Costamagna, S. Srinivasan, J. Benziger and A. B. Bocarsly: J. Power Sour., Vol. 103, (2001), p. . 1.

Google Scholar

[4] D. Fritsch, L. Vakhtangishvili and H. R. Kricheldorf: J. Macromol. Sci. Pure Appl. Chem., Vol. 39, (2002), p.1335.

Google Scholar

[5] H. R. Kricheldorf, L. Vakhtangishvili and D. J. Fritsch: J. Polym. Sci. Part A: Polym. Chem., Vol. 40, (2002), p.2967.

Google Scholar

[6] S. P. Kim, J. S. Lee, S. H. Kim, B. H. Lee, S. H. Kim and W. G. Kim, J. Korean Ind. and Eng. Chem., Vol. 5(4), (1999), p.268.

Google Scholar

[7] S. P. Kim, B. H. Lee, S. H. Kim and W. G. Kim: Bull. Korea Chem. Soc., 19(12), (1998), p.1388.

Google Scholar

[8] B, Smitha, S. Sridhar and A. A. Khan: J. Membr. Sci., Vol. 225, (2003), p.63.

Google Scholar

[9] M. Nogami, R. Nagao and C. Wong: J. Phy. Chem. B, Vol. 102, (1998), p.5772.

Google Scholar

[10] D. S. Kim, D. B. Park, J. W. Rhim and Y. M. Lee: J. Membr. Sci., Vol. 240, (2004), p.37.

Google Scholar

[11] Y. M. Kim, S. H. Choi, H. C. Lee, M. Z. Hong, K. Kim and H. I Lee: Electrochimica, Vo. 49, (2004), p.4797.

Google Scholar