Microstructure and Mechanical Properties of Twin-Roll Strip Cast Mg Alloys

Abstract:

Article Preview

Development of wrought Mg alloys, particularly in sheet form, is essential to support the growing interest for lightweight components in the automotive industry. However, development of Mg alloy sheets has been quite slow due to the complexity of sheet production originated from limited deformability of Mg. In this respect, twin-roll strip casting, a one-step processing of flat rolled products, can be an alternative for the production of Mg alloy sheets. In this study, AZ31 and experimental ZM series alloys are twin-roll strip cast into 2 mm thick sheets. The microstructure of the as-cast AZ31 alloy sheet consists of columnar zones near the roll side and equiaxed zones in the mid-thickness region. On the other hand, as-cast ZM series alloy sheets show equiaxed dendritic structure through the thickness of sheet. These alloys were subjected to various thermo-mechanical treatments and their tensile properties were evaluated. Twin-roll strip cast AZ31 alloy in H24 condition has equivalent yield and tensile strengths with similar ductility compared to commercial ingot cast AZ31-H24 alloy, indicating that twin-roll strip casting is a viable process for the fabrication of Mg alloy sheets. The experimental ZM series alloys have a large volume fraction of fine dispersoid particles in the microstructure, resulting from the beneficial effect of twin-roll strip casting on microstructural refinement. It has been shown that the experimental ZM series alloys have superior tensile properties compared to commercial ingot cast AZ31-H24 alloy, suggesting the possibility of the development of new wrought Mg alloy sheets by twin-roll strip casting.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

119-126

Citation:

S. S. Park et al., "Microstructure and Mechanical Properties of Twin-Roll Strip Cast Mg Alloys", Materials Science Forum, Vols. 539-543, pp. 119-126, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] J. Enss et al.: Magnesium Alloys and their Applications, ed. K.U. Kainer (Wiley-VCH, Germany 2000), p.590.

[2] A.A. Luo: Int. Mater. Rev. Vol. 49 (2004), p.13.

[3] B.L. Mordike and T. Ebert: Mater. Sci. Eng. A Vol. 302 (2001), p.37.

[4] J.J. Kim, D.H. Kim, K.S. Shin and N.J. Kim: Scripta Mater. Vol. 41 (1999), p.333.

[5] M.S. Yoo, Y.C. Kim, S. Ahn and N.J. Kim: Mater. Sci. Forum Vol. 419-422 (2003), p.419.

[6] M.S. Yoo, K.S. Shin and N.J. Kim: Metall. Mater. Trans. A Vol. 35A (2004), p.1629.

[7] D.H. Kang, M.S. Yoo, S.S. Park and N.J. Kim: Mater. Sci. Forum Vol. 475-479 (2005), p.521.

[8] D.H. Kang, M.S. Yoo, S.S. Park and N.J. Kim: Mater. Sci. Forum Vol. 488-489 (2005), p.759.

[9] D.H. Kang, S.S. Park and N.J. Kim: Mater. Sci. Eng. A Vol. 413-414 (2005), p.555.

[10] L. Lin, Z. Liu, L. Chen and F. Li: Met. Mater. -Int. Vol. 10 (6) (2004), p.507.

[11] Y.B. Unigovski, E.M. Gutman: Appl. Surf. Sci. Vol. 153 (1999), p.47.

[12] P. Zhang: Scripta Mater. Vol. 52 (2005), p.277.

[13] M. Vogel, O. Kraft and E. Arzt: Scripta Mater. Vol. 48 (2003), p.985.

[14] M. Regev, E. Aghion, A. Rosen and M. Bamberger: Mater. Sci. Eng. A Vol. 252 (1998), p.6.

[15] A. Luo and M.O. Pekguleryuz: J. Mater. Sci. Vol. 29 (1994), p.5259.

[16] W. Sebastian, K. Droder and S. Schumann: Magnesium Alloys and their Applications, ed. K.U. Kainer (Wiley-VCH, Germany 2000), p.602.

[17] A.A. Luo: JOM, February (2002), p.42.

[18] E. Doege and K. Droder: J. Mater. Process. Tech. Vol. 115 (2001), p.14.

[19] D.K. Kim et al.: Met. Mater. -Int. Vol. 2 (4) (1996), p.211.

[20] S.G. Pyo, J.J. Kim and N.J. Kim: J. Kor. Inst. Met. & Mater. Vol. 37 (10) (1999), p.1204.

[21] M. Yun, S. Lokyer and J.D. Hunt: Mater. Sci. Eng. A Vol. 280 (2000), p.116.

[22] Y.S. Park, S.B. Lee and N.J. Kim: Mater. Trans. Vol. 44 (2003), p.2617.

[23] J.G. Lee, S.S. Park, S.B. Lee, H-T. Chung and N.J. Kim: Scripta Mater. Vol. 53 (2005), p.693.

[24] J.G. Lee, D-G. Lee, S. Lee and N.J. Kim: Metall. Mater. Trans. A Vol. 35 (2004), p.3753.

[25] J.G. Lee, D-G. Lee, S. Lee, K. Cho, I. Park and N.J. Kim: Mat. Sci. Eng. A Vol. 390 (2005), p.427.

[26] J.G. Lee, S.S. Park, D-G. Lee, S. Lee and N.J. Kim: Intermetallics Vol. 12 (2004), p.1125.

[27] J.G. Lee, H. Lee, Y.S. Oh and N.J. Kim: Intermetallics, in press.

[28] J.G. Lee, H.S. Kim, S. Lee and N.J. Kim: Mat. Sci. Eng. A, in press.

[29] J.G. Lee, S.S. Park, S.B. Lee, H-T. Chung and N.J. Kim: J. of Metastable and Nanocryst. Mater. Vol. 24-25 (2005), p.371.

[30] J.G. Lee, S.S. Park, Y.S. Park and N.J. Kim: J. of Metastable and Nanocryst. Mater. Vol. 15-16 (2003), p.43.

[31] S.S. Park, Y.M. Kim, D.H. Kang and N.J. Kim: Mater. Sci. Forum Vol. 475-479 (2005), p.457.

[32] S.S. Park, D.H. Kang, G.T. Bae and N.J. Kim: Mater. Sci. Forum Vol. 488-489 (2005), p.431.

[33] S.S. Park, Y.S. Park and N.J. Kim: Met. Mater. -Int. Vol. 8 (6) (2002), p.551.

[34] S.S. Park, J.G. Lee and N.J. Kim: T. Indian I. Metals Vol. 58 (4) (2005), p.687.

[35] S.S. Park, J.G. Lee and N.J. Kim: J. Rare Earth Vol. 22 (2004), p.78, Suppl.

[36] Y. Fujita et al.: ISIJ International Vol. 29 (1989), p.495.

[37] S.Y. Eum, H.M. Park and T.W. Nam: J. Kor. Foundrymen's Soc. Vol. 20 (1) (2000), p.31.

[38] H. Baker et al.: Metals Handbook, Vol. 2 (American Society for Metals, USA 1979).

[39] S.S. Park, Y.S. Oh, D.H. Kang and N.J. Kim: Mater. Sci. Eng. A, in press.

[40] J.D. Verhoeven: Fundamentals of Physical Metallurgy (John Wiley & Suns, Inc., USA 1975).

[41] S.W. Nam and D.H. Lee: Met. Mater. -Int. Vol. 6 (1) (2000), p.13.

Fetching data from Crossref.
This may take some time to load.