Manufacturing and Oxidation Behavior of Silicide-Based Nanocomposite Coatings on Refractory Metals by Displacement Reaction

Abstract:

Article Preview

The microstructure and oxidation resistance of MSi2-SiC or MSi2-Si3N4 nanocomposite coatings (M = Mo, W, Nb, Ta) on M substrates formed by displacement reactions between M-carbides or M–nitrides and silicon, respectively, was investigated. Present study demonstrated that the crack density formed in the MSi2-base nanocomposite coatings due to mismatch in the coefficient of thermal expansion between nanocomposite coatings and M substrates could be controlled by adjusting the volume fraction of the SiC or Si3N4 reinforcing particles with the low CTE values. The high- and low-temperature oxidation resistance of nanocomposite coatings was superior to that of monolithic MSi2 coatings.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

135-140

Citation:

J. K. Yoon et al., "Manufacturing and Oxidation Behavior of Silicide-Based Nanocomposite Coatings on Refractory Metals by Displacement Reaction", Materials Science Forum, Vols. 539-543, pp. 135-140, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] B.A. Pint, J.R. DiStefano, I.G. Wright, Mater. Sci. Eng. A415 (2006) 255.

[2] P. Kofstad, High Temperature Corrosion, Elsevier Applied Science Publishing, London, (1988).

[3] A.K. Vasudévan, J.J. Petrovic, Mater. Sci. Eng. A155 (1992) 1.

[4] K. Kurokawa, H. Matsuoka, H. Takahashi, Mater. Sci. Forum 252-254 (1997) 885.

[5] T.C. Chou, T.G. Nieh, J. Mater. Res. 8 (1993) 214.

[6] C.M. Packer, R.A. Perkins: J. Less-Common Met. 37 (1974) 361.

[7] J.K. Yoon, G.H. Kim, J.Y. Byun, J.S. Kim, C.S. Choi, Surf. Coat. Technol. 148 (2001), 129.

[8] J.K. Yoon, J.Y. Byun, G.H. Kim, J.S. Kim, C.S. Choi, - Surf. Coat. Technol. 155 (2002) 85.

[9] J.K. Yoon, J.K. Lee, K.H. Lee, J.Y. Byun, G.H. Kim, K.T. Hong, Intermetallics 11 (2003) 687.

[10] J.Y. Byun, J.K. Yoon, G.H. Kim, J.S. Kim, C.S. Choi, Scripta Mater. 46 (2002) 537.

[11] R.O. Suzuki, M. Ishikwa, K. Ono, J. Alloys Comp. 336 (2002) 280.

[12] P. Lubin, L. Sama, J. Am. Ceram. Soc. Bull. 46 (1967) 1083.

[13] J.K. Yoon, J.Y. Byun, G.H. Kim, J.S. Kim, C.S. Choi, Thin Solid Films 405 (2002), 170.

[15] J.K. Yoon, K.H. Lee, G.H. Kim, J.K. Lee, J.M. Doh, K.T. Hong, J. Electrochem. Soc. 151 (2004) B309-B318.

[16] J.K. Yoon, J.M. Doh, J.Y. Byun, G.H. Kim, J.K. Lee, K.T. Hong, Surf. Coat. Technol. 173 (2003) 39.

[17] J.K. Yoon, K.H. Son, G.H. Kim, J.H. Han, J.M. Doh, K.T. Hong, Zeitschrift Metall. 96 (2005) 281.

[18] J.K. Yoon, G.H. Kim, J.M. Doh, K.T. Hong, D.W. Kum, Metal Mater. Inter. 11 (2005) 457.

[19] K.H. Son, J.K. Yoon, J.M. Doh, J.Y. Byun, S.R. Lee, K.T. Hong, Scripta Mater. 49 (2003) 345.

[20] K.H. Lee, J.K. Yoon, J.K. Lee, J.M. Doh, K.T. Hong, W.Y. Yoon, Surf. Coat. Technol. 187 (2004) 146.

[21] J.K. Yoon, K.W. Lee, S.J. Chung, I.J. Shon, J.M. Doh, G.H. Kim, J. Alloys Comp. (2006) - in press.

[22] K.H. Son, J.K. Yoon, J.H. Han, G.H. Kim, J.M. Doh, S.R. Lee, J. Alloys Comp. 395 (2005) 185.

[23] J.K. Yoon, G.H. Kim, J.Y. Byun, J.K. Lee, Y.H. Paik, J.S. Kim, Scripta Mater. 47 (2002) 249.

[24] J.K. Yoon, J.K. Lee, J.Y. Byun, G.H. Kim, Y.H. Paik, J.S. Kim, Surf. Coat. Technol. 160 (2002) 29.

[25] J.K. Yoon, G.H. Kim, J.Y. Byun, J.K. Lee, J.S. Kim, Surf. Coat. Technol. 165 (2003) 81.

[26] J.K. Yoon, G.H. Kim, J.H. Han, I.J. Shon, J.M. Doh, K.T. Hong, Intermetallics, 13 (2005) 1146.

[27] K.H. Lee, J.K. Yoon, G.H. Kim, J.M. Doh, K.T. Hong, W.Y. Yoon, J. Mater. Res. 19 (2004) 3009.

[28] J.K. Yoon, G.H. Kim, J.H. Han, I.J. Shon, J.M. Doh, K.T. Hong, Surf. Coat. Technol. 200 (2005) 2537.

[29] J.K. Yoon, K.H. Lee, G.H. Kim, J.H. Han, J.M. Doh, K.T. Hong, Mater. Trans. 45 (2004) 2435.

Fetching data from Crossref.
This may take some time to load.