Analysis of the Solidification Microstructure of Multi- Component γ-TiAl Alloys

Abstract:

Article Preview

Gamma titanium aluminide alloys often solidify peritectically and show a coarse, dendritic microstructure, which can lead to unacceptable mechanical properties in the as-cast condition. In view of the development of improved cast alloys, the dependence of the solidifying microstructure on the aluminum content and other alloying elements was investigated. The formation of the observed solidification microstructures is discussed in comparison with microstructure formation maps calculated by the NCU (nucleation and constitutional undercooling) model developed by Hunziker et al. [1].

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

1475-1480

Citation:

M. Oehring et al., "Analysis of the Solidification Microstructure of Multi- Component γ-TiAl Alloys", Materials Science Forum, Vols. 539-543, pp. 1475-1480, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] O. Hunziker, M. Vandyoussefi, W. Kurz: Acta mater. Vol. 46 (1998), pp.6325-6336.

[2] Y-W. Kim, D. M Dimiduk, in: Structural Intermetallics 1997 (Eds. M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, TMS, Warrendale, PA, 1997), pp.531-543.

[3] F. Appel, R. Wagner: Mater. Sci. Eng. R Vol. R22 (1998), pp.187-268.

[4] M. Yamaguchi, H. Inui, K. Ito: Acta mater. Vol. 48 (2000), pp.307-322.

[5] C.M. Austin, T.J. Kelly, in: Gamma Titanium Aluminides (Eds. Y-W. Kim, R. Wagner, M. Yamaguchi, TMS, Warrendale, PA, 1995), pp.21-32.

[6] S. Naka, M. Thomas, C. Sanchez, T. Khan, in: Structural Intermetallics 1997 (Eds. M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, TMS, Warrendale, PA, 1997), pp.313-322.

[7] M. DeGraef, N. Biery, L. Rishel, T.M. Pollock, A. Cramb, in: Gamma Titanium Aluminides 1999 (Eds. Y-W. Kim, D.M. Dimiduk, M.H. Loretto, TMS, Warrendale, PA, 1999), pp.247-254.

[8] I. Ohnuma. Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, K. Ishida: Acta mater. Vol. 48 (2000), pp.3113-3123.

DOI: https://doi.org/10.1016/s1359-6454(00)00118-x

[9] C. McCullough, J.J. Valencia, C.G. Levi, R. Mehrabian: Acta metall. Vol. 37 (1989). p.13211336.

[10] H. -G. Brokmeier, M. Oehring, U. Lorenz, H. Clemens, F. Appel: Metall. Mater. Trans. A Vol. 35A (2004), pp.3562-3579.

[11] D. E Larsen, in: Intermetallic Matrix Composites (Eds. D.L. Anton, R. McMeeking, D. Miracle, P. Martin, Mater. Res. Soc. Symp. Proc. Vol. 194, MRS, Pittsburgh, PA, 1990), pp.285-292.

[12] T.T. Cheng, in: Gamma Titanium Aluminides 1999 (Eds. Y-W. Kim, D.M. Dimiduk, M.H. Loretto, TMS, Warrendale, PA, 1999), pp.389-396.

[13] D.R. Johnson, K. Chihara, H. Inui, M. Yamaguchi: Acta mater. Vol. 46 (1998), pp.6529-6540.

[14] Y. Liu, G. Yang, Y. Zhou: J. Cryst. Growth Vol. 240 (2002), pp.603-610.

[15] B. Chalmers: Principles of Solidification (John Wiley and Sons, New York, NY, 1964).

Fetching data from Crossref.
This may take some time to load.