Analysis of the Solidification Microstructure of Multi- Component γ-TiAl Alloys

Article Preview

Abstract:

Gamma titanium aluminide alloys often solidify peritectically and show a coarse, dendritic microstructure, which can lead to unacceptable mechanical properties in the as-cast condition. In view of the development of improved cast alloys, the dependence of the solidifying microstructure on the aluminum content and other alloying elements was investigated. The formation of the observed solidification microstructures is discussed in comparison with microstructure formation maps calculated by the NCU (nucleation and constitutional undercooling) model developed by Hunziker et al. [1].

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

1475-1480

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Hunziker, M. Vandyoussefi, W. Kurz: Acta mater. Vol. 46 (1998), pp.6325-6336.

Google Scholar

[2] Y-W. Kim, D. M Dimiduk, in: Structural Intermetallics 1997 (Eds. M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, TMS, Warrendale, PA, 1997), pp.531-543.

Google Scholar

[3] F. Appel, R. Wagner: Mater. Sci. Eng. R Vol. R22 (1998), pp.187-268.

Google Scholar

[4] M. Yamaguchi, H. Inui, K. Ito: Acta mater. Vol. 48 (2000), pp.307-322.

Google Scholar

[5] C.M. Austin, T.J. Kelly, in: Gamma Titanium Aluminides (Eds. Y-W. Kim, R. Wagner, M. Yamaguchi, TMS, Warrendale, PA, 1995), pp.21-32.

Google Scholar

[6] S. Naka, M. Thomas, C. Sanchez, T. Khan, in: Structural Intermetallics 1997 (Eds. M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, TMS, Warrendale, PA, 1997), pp.313-322.

Google Scholar

[7] M. DeGraef, N. Biery, L. Rishel, T.M. Pollock, A. Cramb, in: Gamma Titanium Aluminides 1999 (Eds. Y-W. Kim, D.M. Dimiduk, M.H. Loretto, TMS, Warrendale, PA, 1999), pp.247-254.

Google Scholar

[8] I. Ohnuma. Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, K. Ishida: Acta mater. Vol. 48 (2000), pp.3113-3123.

DOI: 10.1016/s1359-6454(00)00118-x

Google Scholar

[9] C. McCullough, J.J. Valencia, C.G. Levi, R. Mehrabian: Acta metall. Vol. 37 (1989). p.13211336.

Google Scholar

[10] H. -G. Brokmeier, M. Oehring, U. Lorenz, H. Clemens, F. Appel: Metall. Mater. Trans. A Vol. 35A (2004), pp.3562-3579.

Google Scholar

[11] D. E Larsen, in: Intermetallic Matrix Composites (Eds. D.L. Anton, R. McMeeking, D. Miracle, P. Martin, Mater. Res. Soc. Symp. Proc. Vol. 194, MRS, Pittsburgh, PA, 1990), pp.285-292.

Google Scholar

[12] T.T. Cheng, in: Gamma Titanium Aluminides 1999 (Eds. Y-W. Kim, D.M. Dimiduk, M.H. Loretto, TMS, Warrendale, PA, 1999), pp.389-396.

Google Scholar

[13] D.R. Johnson, K. Chihara, H. Inui, M. Yamaguchi: Acta mater. Vol. 46 (1998), pp.6529-6540.

Google Scholar

[14] Y. Liu, G. Yang, Y. Zhou: J. Cryst. Growth Vol. 240 (2002), pp.603-610.

Google Scholar

[15] B. Chalmers: Principles of Solidification (John Wiley and Sons, New York, NY, 1964).

Google Scholar