Glass Forming and Thermal Properties of the Mg65Cu25GD10-xNdx (x=0~10) Amorphous Alloys

Abstract:

Article Preview

The Mg65Cu25Gd10-xNdx (x=0 ~ 10) amorphous alloy rods with 3~6 mm in diameter were prepared by Cu-mold injection method. The thermal properties and mechanical properties of these amorphous alloys have been investigated by DSC, SEM with EDS capability, X-ray diffractometry (XRD) and Vickers hardness test. The XRD revealed that these entire as-quenched Mg65Cu25Gd10-xNdx alloy rods exhibit a broaden diffraction pattern of amorphous phase. A clear Tg (glass transition temperature) and supercooled region (about 30~60 K) were revealed for all of those Mg65Cu25Gd10-xNdx alloys. In addition, the single stage crystallization of the Mg65Cu25Gd10 alloy was found to change into two stages crystallization when the Nd element was added into this alloy. In parallel, the crystallization temperature (Tx) and supercooled region (Tx) presents a decreasing trend with increasing Nd content. The lowest liquidus temperature (Tl, about 721 K) occurs at the Mg65Cu25Gd8Nd2 alloy. In addition, The Mg65Cu25Gd8Nd2 alloy exhibits the high γ value (0.416, defined as γ= Tx/Tg+Tl), a relatively high Trg (0.59, defined as Trg = Tg/Tl) and the highest hardness in these alloys.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

2106-2110

DOI:

10.4028/www.scientific.net/MSF.539-543.2106

Citation:

L.J. Chang et al., "Glass Forming and Thermal Properties of the Mg65Cu25GD10-xNdx (x=0~10) Amorphous Alloys", Materials Science Forum, Vols. 539-543, pp. 2106-2110, 2007

Online since:

March 2007

Export:

Price:

$35.00

[1] A. A. Lou, J. Metals, 54-2 (2002) 42.

[2] M. O. Pekguleryuz, H. Kaplan, R. Neelameggham, J. Hryn, B. Powell, G. Cole, and J. F. Nie, J. Metals, 54 -8 (2002) 18.

[3] D. L. Albright, F. Bergeron, R. Neelameggham, A. A. Luo, H. Kaplan, and M. O. Pekguleryuz, J. Metals, 54 -8 ( 2002) 22.

[4] A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto, Mater. Trans. JIM, 32 (1991) 609.

[5] A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, Mater. Trans. JIM, 33 (1992) 937.

[6] E. S. Park, H. G. Kang, W. T. Kim, and D. H. Kim, J. Non-Cryst. Solids, 279 (2001) 154.

[7] H. Men, Z. Q. Hu, J. Xu, Scripta Mater. 46 (2002) 699.

[8] K. Amiya and A. Inoue, Mater. Trans. JIM, 41 (2000) 1460.

[9] K. Amiya and A. Inoue, Mater. Trans., 42 (2001) 543.

[10] H. Men, W. T. Kim, and D. H. Kim, J. Non-Cryst. Solids, 337 (2004) 29.

[11] A. Inou, K. Ohtera, K. Kita, T. Masumoto, Jpn. J. Appl. Phys., 27 (1988) L2248.

[12] K. Amiya and A. Inoue, Mater. Trans. JIM, 41 (2000) 1460.

[13] G. Yuan, T. Zhang, and A. Inoue, Mater. Trans., 44 (2000) 1460.

[14] D. Turnbull, Contemp. Phys. 10 (1969) 473.

[15] Z. P. Lu and C. T. Liu, Acta Metall., 50 (2002) 3501.

[16] H. E. Kissinger, Analyst. Chem., vol. 29 (1957) 170.

In order to see related information, you need to Login.