Glass Forming and Thermal Properties of the Mg65Cu25GD10-xNdx (x=0~10) Amorphous Alloys

Article Preview

Abstract:

The Mg65Cu25Gd10-xNdx (x=0 ~ 10) amorphous alloy rods with 3~6 mm in diameter were prepared by Cu-mold injection method. The thermal properties and mechanical properties of these amorphous alloys have been investigated by DSC, SEM with EDS capability, X-ray diffractometry (XRD) and Vickers hardness test. The XRD revealed that these entire as-quenched Mg65Cu25Gd10-xNdx alloy rods exhibit a broaden diffraction pattern of amorphous phase. A clear Tg (glass transition temperature) and supercooled region (about 30~60 K) were revealed for all of those Mg65Cu25Gd10-xNdx alloys. In addition, the single stage crystallization of the Mg65Cu25Gd10 alloy was found to change into two stages crystallization when the Nd element was added into this alloy. In parallel, the crystallization temperature (Tx) and supercooled region (Tx) presents a decreasing trend with increasing Nd content. The lowest liquidus temperature (Tl, about 721 K) occurs at the Mg65Cu25Gd8Nd2 alloy. In addition, The Mg65Cu25Gd8Nd2 alloy exhibits the high γ value (0.416, defined as γ= Tx/Tg+Tl), a relatively high Trg (0.59, defined as Trg = Tg/Tl) and the highest hardness in these alloys.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

2106-2110

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. A. Lou, J. Metals, 54-2 (2002) 42.

Google Scholar

[2] M. O. Pekguleryuz, H. Kaplan, R. Neelameggham, J. Hryn, B. Powell, G. Cole, and J. F. Nie, J. Metals, 54 -8 (2002) 18.

Google Scholar

[3] D. L. Albright, F. Bergeron, R. Neelameggham, A. A. Luo, H. Kaplan, and M. O. Pekguleryuz, J. Metals, 54 -8 ( 2002) 22.

Google Scholar

[4] A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto, Mater. Trans. JIM, 32 (1991) 609.

Google Scholar

[5] A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, Mater. Trans. JIM, 33 (1992) 937.

Google Scholar

[6] E. S. Park, H. G. Kang, W. T. Kim, and D. H. Kim, J. Non-Cryst. Solids, 279 (2001) 154.

Google Scholar

[7] H. Men, Z. Q. Hu, J. Xu, Scripta Mater. 46 (2002) 699.

Google Scholar

[8] K. Amiya and A. Inoue, Mater. Trans. JIM, 41 (2000) 1460.

Google Scholar

[9] K. Amiya and A. Inoue, Mater. Trans., 42 (2001) 543.

Google Scholar

[10] H. Men, W. T. Kim, and D. H. Kim, J. Non-Cryst. Solids, 337 (2004) 29.

Google Scholar

[11] A. Inou, K. Ohtera, K. Kita, T. Masumoto, Jpn. J. Appl. Phys., 27 (1988) L2248.

Google Scholar

[12] K. Amiya and A. Inoue, Mater. Trans. JIM, 41 (2000) 1460.

Google Scholar

[13] G. Yuan, T. Zhang, and A. Inoue, Mater. Trans., 44 (2000) 1460.

Google Scholar

[14] D. Turnbull, Contemp. Phys. 10 (1969) 473.

Google Scholar

[15] Z. P. Lu and C. T. Liu, Acta Metall., 50 (2002) 3501.

Google Scholar

[16] H. E. Kissinger, Analyst. Chem., vol. 29 (1957) 170.

Google Scholar