Microstructure and Mechanical Properties of Commercial Purity Copper Resulting from Repeated Groove Pressing Followed by Cold Rolling

Article Preview

Abstract:

Groove pressing (GP) is a severe plastic deformation technique for producing ultra fine grain sized microstructures in metals and alloys. In the present study, groove pressing and a two-step process of groove pressing followed by cold rolling was used to investigate the potential of these processes to produce ultra fine grained copper with significantly enhanced strength. Mechanical and microstructure properties were evaluated after groove pressing and after groove pressing followed by cold rolling. The advantages conferred by groove pressing prior to cold rolling on producing copper with enhanced properties has been investigated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

2198-2203

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.M. Segal, Mater. Sc. Eng. A197 (1995), p.157.

Google Scholar

[2] V.M. Segal, Mater. Sc. Eng. A386 (2004), p.269.

Google Scholar

[3] M. Kamachi, M. Furukawa, Z. Horita, T.G. Langdon, Mater. Sc. Eng. A361 (2003), p.258.

Google Scholar

[4] Z. Horita, T. Fujinami, M. Nemoto, T.G. Langdon, Metall. Mater. Trans. 31A (2000), p.691.

Google Scholar

[5] S.J. Oh, S.B. Kang, Mater. Sc. Eng A343 (2003), p.107.

Google Scholar

[6] Y.Y. Wang, P.L. Sun, P.W. Kao, C.P. Chang, Scripta Mater. 50 (2004), p.613.

Google Scholar

[7] Y. Siato, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47 (1999), p.579.

Google Scholar

[8] N. Tsuji, Y. Siato, H. Utsunomiya, S. Tanigawa, Scripta Mater. 40 (1999), p.795.

Google Scholar

[9] S.H. Lee, Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Scripta Mater 46(2002), p.281.

Google Scholar

[10] K.T. Park, H.J. Kwon, W.J. Kim, Y.S. Kim, Mater. Sc. Eng. A316 (2001), p.145.

Google Scholar

[11] J.Y. Huang, Y.T. Zhu, H. Jiang and T.C. Lowe, Acta Mater. 49 (2001), p.1497.

Google Scholar

[12] J. Huang, Y.T. Zhu, J. David, and T.C. Lowe, Mater. Sc. Eng. A371 (2004), p.35.

Google Scholar

[13] Y.T. Zhu, H. Jiang, J.Y. Huang, T. C. Lowe, Metall. Mater. Trans. A32 (2001), p.1559.

Google Scholar

[14] A. Krishnaiah, Uday Chakkingal, and P. Venugopal, Scripta Mater. 52 (2005), p.1229.

Google Scholar

[15] A. Krishnaiah, Uday Chakkingal, and P. Venugopal, Mater. Sc. Eng. A410 (2005), p.337.

Google Scholar

[16] D.H. Shin, J.J. Park, Y.S. Kim, K.T. Park, Mater. Sc. Eng. A328 (2002), p.98.

Google Scholar

[17] J.W. Lee, J.J. Park, J. Mater. Process. Tech. 130 (2002), p.208.

Google Scholar

[18] M.H. Shih, C.Y. Yu, P.W. Kao, C.P. Chang, Scripta Mater. 45 (2001), p.793.

Google Scholar

[19] W.H. Huang, C.Y. Yu, P.W. Kao, C.P. Chang, Mater. Sc. Eng. A366 (2004), p.221.

Google Scholar

[20] K. Neishi, Z. Horita, T.G. Langdon, Mater. Sc. Eng. A352 (2003), p.129.

Google Scholar

[21] B. Mingler, H.P. Karnthaler, M. Zehetbauer, R.Z. Valiev, Mater. Sc. Eng. A319 (2001), p.242.

Google Scholar

[22] D. Kuhlmann-Wilsdorf, Mater. Sc. Eng. A 315 (2001), p.211.

Google Scholar