Models and Equations for Atomic Transport Coefficients of Liquid Metals: Viscosity and Self-Diffusivity

Abstract:

Article Preview

The current article presented appropriate models using a new parameter recently introduced by the authors to accurately predict the atomic transport coefficients, i.e. viscosity and self-diffusivity, of liquid metallic elements at their melting points. The models for both the meltingpoint viscosity and self-diffusivity are expressed in terms of well-known physical quantities; atomic mass, atomic volume, melting point, melting-point surface tension, and the new parameter T ξ . Moreover, the authors derived expressions for the temperature dependence of the atomic transport coefficients of liquid metallic elements in terms of melting point temperature. These two models give very good agreement with experimental data for various metallic liquids. Using the models, self-diffusivities were predicted for liquid aluminum, calcium, and magnesium.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

2509-2517

Citation:

T. Iida et al., "Models and Equations for Atomic Transport Coefficients of Liquid Metals: Viscosity and Self-Diffusivity", Materials Science Forum, Vols. 539-543, pp. 2509-2517, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] T. Iida, R.I.L. Guthrie, M. Isac, and N. Tripathi: Metall. Mater. Trans. Vol. 37B (2006), p.403.

[2] B.J. Keene: Int. Mater. Rev. Vol. 38(4) (1993), p.157.

[3] T. Iida, R.I.L. Guthrie, and M. Isac: ICS Proc., 3rd Int. Congr. on Science and Technology of Steelmaking, Association for Iron & Steel Technology, Charlotte, NC, (2005), p.57.

[4] T. Iida, R.I.L. Guthrie, and M. Isac: ICS Proc., 3rd Int. Congr. on Science and Technology of Steelmaking, Association for Iron & Steel Technology, Charlotte, NC, (2005), p.3.

[5] P. -F. Paradis, T. Ishikawa, and S. Yoda: Int. J. Thermophys. Vol. 23(3) (2002), p.825.

[6] T. Ishikawa, P. -F. Paradis, T. Itami, and S. Yoda: J. Chem. Phys. Vol. 118(17) (2003), p.7912.

[7] R.P. Chhabra and D.K. Sheth: Z. Metallkde. Vol. 81(4) (1990), p.264.

[8] T. Iida and R.I.L. Guthrie: The Physical Properties of Liquid Metals (Oxford University Press, Oxford, United Kingdom 1993).

[9] T.E. Faber: Introduction to the Theory of Liquid Metals (Cambridge University Press. Cambridge, United Kingdom 1972).

[10] E.T. Turkdogan: Physical Chemistry of High Temperature Technology (Academic Press, New York 1980).

[11] R.J. Speedy, F.X. Prielmeier, T. Vardag, E.W. Lang, and H.D. Lüdemann: Molec. Phys., Vol. 66(3) (1989), p.577.

[12] E.T. Turkdogan: Can. Metall. Q. Vol. 41(2) (2002), p.151.

[13] W.F. Gale and T.C. Tolemeier: Simithells Metals Reference Book (Elsevier Butherworth- Heineman, Oxford, United Kingdom 2004).

[14] Metals Data Book (The Japan Institute of Metals edited: Maruzen Company LTD, Tokyo 2004).

[15] K. Nagata, Y. Ono, T. Ejima, and T. Yamamura: Handbook of Physico-Chemical Properties at High Temperatures (The Iron and Steel Institute of Japan, Tokyo 1988).

[16] A.S. Chauhan, R. Ravi, and R.P. Chahabra: Chem. Phys. Vol. 252 (2000), p.227.

[17] T. Iida and R.I.L. Guthrie: ibid. 9 (Oxford University Press, Oxford, United Kingdom 1993).

[18] N.H. Nachtrieb: Adv. Phys. Vol. 16 (1967), p.323.

[19] T. Masaki, T. Fukazawa, S. Matsumoto, T. Itami, and S. Yoda: Meas. Sci. Technol. Vol. 16(2) (2005), p.327.

Fetching data from Crossref.
This may take some time to load.