Multiscale Modelling of the Mechanical Behaviour of Oriented Semicrystalline Polymers

Article Preview

Abstract:

For semicrystalline materials, a stacked lamellar morphology gives rise to a strongly anisotropic mechanical response. A multiscale numerical model is used to simulate the effect of a stacked lamellar microstructure on the macroscopic behaviour. The constitutive properties of the material are identified separately for the crystallographic and amorphous domains. The averaged fields of aggregates of individual phases, having different preferential orientations are determined. The anisotropy of preferentially oriented material is investigated in different deformation modes.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

2607-2612

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Lin and A. S. Argon. Structure and plastic deformation of polyethylene. Journal of Materials Science, 29: 294-323, (1994).

Google Scholar

[2] C. G'Sell and A. Dahoun. Evolution of microstructure in semi-crystalline polymers under large plastic deformation. Materials Science and Engineering A, 175: 183-199, (1994).

DOI: 10.1016/0921-5093(94)91058-8

Google Scholar

[3] D. M. Parks and S. Ahzi. Polycrystalline plastic deformation and texture evolution for crystals lacking five independent slip systems. Journal of the Mechanics and Physics of Solids, 38: 701-724, (1990).

DOI: 10.1016/0022-5096(90)90029-4

Google Scholar

[4] A. Dahoun, G. R. Canova, A. Molinari, M. J. Philippe, and C. G'Sell. The modelling of large strain textures and stress-strain relations of polyethylene. Textures and Microstructures, 14-18: 347-354, (1991).

DOI: 10.1155/tsm.14-18.347

Google Scholar

[5] Z. Bartczak, R. E. Cohen, and A. S. Argon. Evolution of the crystalline texture of high-density polyethylene during uniaxial compression. Macromolecules, 25: 4692-4704, (1992).

DOI: 10.1021/ma00044a034

Google Scholar

[6] B. J. Lee, D. M. Parks, and S. Ahzi. Micromechanical modeling of large plastic deformation and texture evolution in semi-crystalline polymers. Journal of the Mechanics and Physics of Solids, 41: 1651-1687, (1993).

DOI: 10.1016/0022-5096(93)90018-b

Google Scholar

[7] B. J. Lee, A. S. Argon, D. M. Parks, S. Ahzi, and Z. Bartczak. Simulation of large strain plastic deformation and texture evolution in high density polyethylene. Polymer, 34: 3555-3575, (1993).

DOI: 10.1016/0032-3861(93)90039-d

Google Scholar

[8] J. A. W. Van Dommelen, D. M. Parks, M. C. Boyce, W. A. M. Brekelmans, and F. P. T. Baaijens. Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers. Journal of the Mechanics and Physics of Solids, 51: 519-541, (2003).

DOI: 10.1016/s0022-5096(02)00063-7

Google Scholar

[9] J. A. W. Van Dommelen, D. M. Parks, M. C. Boyce, W. A. M. Brekelmans, and F. P. T. Baaijens. Micromechanical modeling of intraspherulitic deformation of semicrystalline polymers. Polymer, 44: 6089-6101, (2003).

DOI: 10.1016/s0032-3861(03)00558-5

Google Scholar

[10] J. A. W. Van Dommelen, B. A. G. Schrauwen, L. C. A. van Breemen, and L. E. Govaert. Micromechanical modeling of the tensile behavior of oriented polyethylene. Journal of Polymer Science: Part B: Polymer Physics, 42: 2983-2994, (2004).

DOI: 10.1002/polb.20164

Google Scholar

[11] A. S. Argon. Morphological mechanisms and kinetics of large-strain plastic deformation and evolution of texture in semi-crystalline polymers. Journal of Computer-Aided Materials Design, 4: 75-98, (1997).

Google Scholar

[12] E. M. Arruda and M. C. Boyce. A three-dimensional constitutive model for the large stretch behavior of rubber elastic material. Journal of the Mechanics and Physics of Solids, 41: 389-412, (1993).

DOI: 10.1016/0022-5096(93)90013-6

Google Scholar

[13] M. C. Boyce, E. L. Montagut, and A. S. Argon. Thermomechanical coupling on the cold drawing process of glassy polymers. Polymer Engineering and Science, 32: 1073-1085, (1992).

DOI: 10.1002/pen.760321605

Google Scholar

[14] M. C. Boyce, D. M. Parks, and A. S. Argon. Large inelastic deformation of glassy polymers. part I: Rate dependent constitutive model. Mechanics of Materials, 7: 15-33, (1988).

DOI: 10.1016/0167-6636(88)90003-8

Google Scholar

[15] A. Keller and S. Sawada. On the interior morphology of bulk polyethylene. Die Makromolekulare Chemie, 74: 190-221, (1964).

Google Scholar

[16] D. C. Bassett and A. M. Hodge. On the morphology of melt-crystallized polyethylene I. lamellar profiles. Proceedings of the Royal Society of London A, 377: 25-37, (1981).

DOI: 10.1098/rspa.1981.0113

Google Scholar