Multiscale Modelling of the Mechanical Behaviour of Oriented Semicrystalline Polymers

Abstract:

Article Preview

For semicrystalline materials, a stacked lamellar morphology gives rise to a strongly anisotropic mechanical response. A multiscale numerical model is used to simulate the effect of a stacked lamellar microstructure on the macroscopic behaviour. The constitutive properties of the material are identified separately for the crystallographic and amorphous domains. The averaged fields of aggregates of individual phases, having different preferential orientations are determined. The anisotropy of preferentially oriented material is investigated in different deformation modes.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

2607-2612

Citation:

J.A.W. van Dommelen et al., "Multiscale Modelling of the Mechanical Behaviour of Oriented Semicrystalline Polymers", Materials Science Forum, Vols. 539-543, pp. 2607-2612, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] L. Lin and A. S. Argon. Structure and plastic deformation of polyethylene. Journal of Materials Science, 29: 294-323, (1994).

[2] C. G'Sell and A. Dahoun. Evolution of microstructure in semi-crystalline polymers under large plastic deformation. Materials Science and Engineering A, 175: 183-199, (1994).

DOI: https://doi.org/10.1016/0921-5093(94)91058-8

[3] D. M. Parks and S. Ahzi. Polycrystalline plastic deformation and texture evolution for crystals lacking five independent slip systems. Journal of the Mechanics and Physics of Solids, 38: 701-724, (1990).

DOI: https://doi.org/10.1016/0022-5096(90)90029-4

[4] A. Dahoun, G. R. Canova, A. Molinari, M. J. Philippe, and C. G'Sell. The modelling of large strain textures and stress-strain relations of polyethylene. Textures and Microstructures, 14-18: 347-354, (1991).

DOI: https://doi.org/10.1155/tsm.14-18.347

[5] Z. Bartczak, R. E. Cohen, and A. S. Argon. Evolution of the crystalline texture of high-density polyethylene during uniaxial compression. Macromolecules, 25: 4692-4704, (1992).

DOI: https://doi.org/10.1021/ma00044a034

[6] B. J. Lee, D. M. Parks, and S. Ahzi. Micromechanical modeling of large plastic deformation and texture evolution in semi-crystalline polymers. Journal of the Mechanics and Physics of Solids, 41: 1651-1687, (1993).

DOI: https://doi.org/10.1016/0022-5096(93)90018-b

[7] B. J. Lee, A. S. Argon, D. M. Parks, S. Ahzi, and Z. Bartczak. Simulation of large strain plastic deformation and texture evolution in high density polyethylene. Polymer, 34: 3555-3575, (1993).

DOI: https://doi.org/10.1016/0032-3861(93)90039-d

[8] J. A. W. Van Dommelen, D. M. Parks, M. C. Boyce, W. A. M. Brekelmans, and F. P. T. Baaijens. Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers. Journal of the Mechanics and Physics of Solids, 51: 519-541, (2003).

DOI: https://doi.org/10.1016/s0022-5096(02)00063-7

[9] J. A. W. Van Dommelen, D. M. Parks, M. C. Boyce, W. A. M. Brekelmans, and F. P. T. Baaijens. Micromechanical modeling of intraspherulitic deformation of semicrystalline polymers. Polymer, 44: 6089-6101, (2003).

DOI: https://doi.org/10.1016/s0032-3861(03)00558-5

[10] J. A. W. Van Dommelen, B. A. G. Schrauwen, L. C. A. van Breemen, and L. E. Govaert. Micromechanical modeling of the tensile behavior of oriented polyethylene. Journal of Polymer Science: Part B: Polymer Physics, 42: 2983-2994, (2004).

DOI: https://doi.org/10.1002/polb.20164

[11] A. S. Argon. Morphological mechanisms and kinetics of large-strain plastic deformation and evolution of texture in semi-crystalline polymers. Journal of Computer-Aided Materials Design, 4: 75-98, (1997).

[12] E. M. Arruda and M. C. Boyce. A three-dimensional constitutive model for the large stretch behavior of rubber elastic material. Journal of the Mechanics and Physics of Solids, 41: 389-412, (1993).

DOI: https://doi.org/10.1016/0022-5096(93)90013-6

[13] M. C. Boyce, E. L. Montagut, and A. S. Argon. Thermomechanical coupling on the cold drawing process of glassy polymers. Polymer Engineering and Science, 32: 1073-1085, (1992).

DOI: https://doi.org/10.1002/pen.760321605

[14] M. C. Boyce, D. M. Parks, and A. S. Argon. Large inelastic deformation of glassy polymers. part I: Rate dependent constitutive model. Mechanics of Materials, 7: 15-33, (1988).

DOI: https://doi.org/10.1016/0167-6636(88)90003-8

[15] A. Keller and S. Sawada. On the interior morphology of bulk polyethylene. Die Makromolekulare Chemie, 74: 190-221, (1964).

[16] D. C. Bassett and A. M. Hodge. On the morphology of melt-crystallized polyethylene I. lamellar profiles. Proceedings of the Royal Society of London A, 377: 25-37, (1981).