[1]
L. Lin and A. S. Argon. Structure and plastic deformation of polyethylene. Journal of Materials Science, 29: 294-323, (1994).
Google Scholar
[2]
C. G'Sell and A. Dahoun. Evolution of microstructure in semi-crystalline polymers under large plastic deformation. Materials Science and Engineering A, 175: 183-199, (1994).
DOI: 10.1016/0921-5093(94)91058-8
Google Scholar
[3]
D. M. Parks and S. Ahzi. Polycrystalline plastic deformation and texture evolution for crystals lacking five independent slip systems. Journal of the Mechanics and Physics of Solids, 38: 701-724, (1990).
DOI: 10.1016/0022-5096(90)90029-4
Google Scholar
[4]
A. Dahoun, G. R. Canova, A. Molinari, M. J. Philippe, and C. G'Sell. The modelling of large strain textures and stress-strain relations of polyethylene. Textures and Microstructures, 14-18: 347-354, (1991).
DOI: 10.1155/tsm.14-18.347
Google Scholar
[5]
Z. Bartczak, R. E. Cohen, and A. S. Argon. Evolution of the crystalline texture of high-density polyethylene during uniaxial compression. Macromolecules, 25: 4692-4704, (1992).
DOI: 10.1021/ma00044a034
Google Scholar
[6]
B. J. Lee, D. M. Parks, and S. Ahzi. Micromechanical modeling of large plastic deformation and texture evolution in semi-crystalline polymers. Journal of the Mechanics and Physics of Solids, 41: 1651-1687, (1993).
DOI: 10.1016/0022-5096(93)90018-b
Google Scholar
[7]
B. J. Lee, A. S. Argon, D. M. Parks, S. Ahzi, and Z. Bartczak. Simulation of large strain plastic deformation and texture evolution in high density polyethylene. Polymer, 34: 3555-3575, (1993).
DOI: 10.1016/0032-3861(93)90039-d
Google Scholar
[8]
J. A. W. Van Dommelen, D. M. Parks, M. C. Boyce, W. A. M. Brekelmans, and F. P. T. Baaijens. Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers. Journal of the Mechanics and Physics of Solids, 51: 519-541, (2003).
DOI: 10.1016/s0022-5096(02)00063-7
Google Scholar
[9]
J. A. W. Van Dommelen, D. M. Parks, M. C. Boyce, W. A. M. Brekelmans, and F. P. T. Baaijens. Micromechanical modeling of intraspherulitic deformation of semicrystalline polymers. Polymer, 44: 6089-6101, (2003).
DOI: 10.1016/s0032-3861(03)00558-5
Google Scholar
[10]
J. A. W. Van Dommelen, B. A. G. Schrauwen, L. C. A. van Breemen, and L. E. Govaert. Micromechanical modeling of the tensile behavior of oriented polyethylene. Journal of Polymer Science: Part B: Polymer Physics, 42: 2983-2994, (2004).
DOI: 10.1002/polb.20164
Google Scholar
[11]
A. S. Argon. Morphological mechanisms and kinetics of large-strain plastic deformation and evolution of texture in semi-crystalline polymers. Journal of Computer-Aided Materials Design, 4: 75-98, (1997).
Google Scholar
[12]
E. M. Arruda and M. C. Boyce. A three-dimensional constitutive model for the large stretch behavior of rubber elastic material. Journal of the Mechanics and Physics of Solids, 41: 389-412, (1993).
DOI: 10.1016/0022-5096(93)90013-6
Google Scholar
[13]
M. C. Boyce, E. L. Montagut, and A. S. Argon. Thermomechanical coupling on the cold drawing process of glassy polymers. Polymer Engineering and Science, 32: 1073-1085, (1992).
DOI: 10.1002/pen.760321605
Google Scholar
[14]
M. C. Boyce, D. M. Parks, and A. S. Argon. Large inelastic deformation of glassy polymers. part I: Rate dependent constitutive model. Mechanics of Materials, 7: 15-33, (1988).
DOI: 10.1016/0167-6636(88)90003-8
Google Scholar
[15]
A. Keller and S. Sawada. On the interior morphology of bulk polyethylene. Die Makromolekulare Chemie, 74: 190-221, (1964).
Google Scholar
[16]
D. C. Bassett and A. M. Hodge. On the morphology of melt-crystallized polyethylene I. lamellar profiles. Proceedings of the Royal Society of London A, 377: 25-37, (1981).
DOI: 10.1098/rspa.1981.0113
Google Scholar