Progress and Current Status in Research on Nanostructured Cu-Ag Microcomposites for Conductor Wires

Article Preview

Abstract:

An overview of the microstructure evolution, mechanical properties, electrical conductivity and microalloying is presented and some further research fields are suggested for Cu-Ag microcomposites. The nanostructures of filamentary morphology in these microcomposites can be obtained by heavy deformation. Both the mechanical and electrical properties depend upon the material composition, strain degree, intermediate heat treatments and final annealing processes. These factors strongly affect the phase proportion, microstructure morphology, precipitate volume, hardening level and filamentary distribution. Optimum technology of materials preparation makes the microcomposites possess high strength and conductivity. Some third constituents added to the alloys improve the strength but generally decrease the conductivity. It is considered that relative mechanisms and processes should be further investigated for the development and application of the microcomposites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

2798-2803

Citation:

Online since:

March 2007

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Benghalem and D.G. Morris: Acta Mater. Vol. 45 (1997), p.397.

Google Scholar

[2] H. Maeda, K. Inoue, T. Kiyoshi, T. Asano, Y. Sakai, T. Takeuchi, K. Itoh, H. Aoki and G. Kido: Physica B Vol. 216 (1996), p.141.

DOI: 10.1016/0921-4526(95)00459-9

Google Scholar

[3] K. Inoue, T. Takeuchi, T. Kiyoshi, T. Asano, Y. Sakai, K. Itoh, G. Kido and H. Maeda: Physica B Vol. 211 (1995), p.17.

DOI: 10.1016/0921-4526(94)00930-t

Google Scholar

[4] T. Asano, Y. Sakai, M. Oshikin, K. Inoue and H. Maeda: IEEE Trans. Magn. Vol. 30 (1994), p.2106.

Google Scholar

[5] J. Freudenberger, W. Grünberger, E. Botcharova, A. Gaganov and L. Schultz: Adv. Eng. Mater. Vol. 4 (2002), p.677.

DOI: 10.1002/1527-2648(20020916)4:9<677::aid-adem677>3.0.co;2-i

Google Scholar

[6] J.T. Wood, J.D. Embury and M. Ashby: Acta Mater. Vol. 45 (1997), p.1099.

Google Scholar

[7] M. Van Cleemput, H. Jones, M. Van der Burgt, J.R. Barrau, J.A. Lee, Y. Eyssa, H.J. Schneider-Muntau: Physica B Vol. 216 (1996), p.226.

DOI: 10.1016/0921-4526(95)00478-5

Google Scholar

[8] J.M. Louis, P.H. Frings and R. Gersdorf: Physica B Vol. 211 (1995), p.69.

Google Scholar

[9] M. Motokawa, H. Nojiri, S. Mitsudo, M. Arai, K. Ubukata, M. Fujita, T. Arakawa and Y. Tnamura: IEEE Trans. Magn. Vol. 32 (1996), p.2534.

DOI: 10.1109/20.511389

Google Scholar

[10] D. Raabe, K. Miyake and H. Takahara: Mater. Sci. Eng. A Vol. 291 (2000), p.186.

Google Scholar

[11] W.A. Spitizig: Acta Metall. Mater. Vol. 39 (1991), p.1085.

Google Scholar

[12] P.D. Funkenbusch, T.H. Courtney: Scr. Metall. Vol. 23 (1990), p.1719.

Google Scholar

[13] J.D. Verhoeven, L.S. Chumbley, F.C. Laabs and W.A. Spitzig: Acta Metall. Mater. Vol. 39 (1991), p.2825.

Google Scholar

[14] W.A. Spitzig, H.L. Downing, F.C. Laabs, E.D. Gibson and J.D. Verhoeven: Metall. Trans. A Vol. 24 (1993), p.7.

Google Scholar

[15] D. Raabe, J. Ball and G. Gottstein: Scr. Metall. Mater. Vol. 27 (1992), p.211.

Google Scholar

[16] D. Raabe and U. Hangen: Mater. Lett. Vol. 22 (1995), p.155.

Google Scholar

[17] D. Raabe and U. Hangen: Acta Mater. Vol. 44 (1996), p.953.

Google Scholar

[18] F. Heringhaus, D. Raabe and G. Gottstein: Acta Metall. Mater. Vol. 43 (1995), p.1467.

Google Scholar

[19] E. Botcharova, M. Heilmaier, J. Freudenberger, G. Drew, D. Kudashow, U. Martin and L. Schultz: J. Alloys Comp. Vol. 351 (2003), p.119.

DOI: 10.1016/s0925-8388(02)01025-3

Google Scholar

[20] L. Thilly, M. Véron, O. Ludwig and F. Lecouturier: Mater. Sci. Eng. A Vol. 309 (2001), p.510.

Google Scholar

[21] J.T. Wood, J.D. Embury and M.F. Ashby: Acta Mater. Vol. 451 (1997), p.1099.

Google Scholar

[22] V. Pantsyrnyi, H.J. Shikov, A. Vorobieva, N. Khlebova, I. Potapenko, A. Silaev, N. Beliakov, G. Vedernikov, N. Kozlenkova and V. Drobishev: Physica B Vol. 294-295 (2001), p.669.

DOI: 10.1016/s0921-4526(00)00741-9

Google Scholar

[23] F. Herlach: Physica B Vol. 294-295 (2001), p.500.

Google Scholar

[24] K. Rosseel, F. Herlach, W. Boon and Y. Bruynseraede: Physica B Vol. 294-295 (2001), p.679.

DOI: 10.1016/s0921-4526(00)00743-2

Google Scholar

[25] L. Thilly, F. Lecouturier, G. Coffe, J.P. Peyrade and S. Askénazy: Physica B Vol. 294-295 (2001) p.648.

DOI: 10.1016/s0921-4526(00)00736-5

Google Scholar

[26] W. Grünberger, M. Heilmaier and L. Schultz: Z. Metallkd. Vol. 93 (2002), p.58.

Google Scholar

[27] K. Han, J.D. Embury, J.R. Sims, L.J. Campbell, H.J. Schneider-Muntau, V.I. Pantsyrnyi, A. Shikov, A. Nikulin and A. Vorobieva: Mater. Sci. Eng. A Vol. 267 (1999), p.99.

DOI: 10.1016/s0921-5093(99)00025-8

Google Scholar

[28] W. Grünberger, M. Heilmaier and L. Schultz: Physica B Vol. 294-295 (2001), p.643.

Google Scholar

[29] K. Han, A.A. Vasquez, Y. Xin and P.N. Kalu: Acta Mater. Vol. 51 (2003), p.767.

Google Scholar

[30] Y. Sakai and H.J. Schneider-Muntau: Acta Mater. Vol. 45 (1997), p.1017.

Google Scholar

[31] Y. Sakai, K. Inoue and H. Maeda: Acta Metall. Mater. Vol. 43 (1995), p.1517.

Google Scholar

[32] S.I. Hong and H.J. Kwon: J. Mater. Res. Vol. 16 (2001), p.1822.

Google Scholar

[33] S.I. Hong and M.A. Hill: Acta Mater. Vol. 46 (1998), p.4111.

Google Scholar

[34] S.I. Hong and M.A. Hill: Mater. Sci. Eng. A Vol. 264 (1999), p.151.

Google Scholar

[35] M.S. Lim, J.S. Song and S.I. Hong: J. Mater. Sci. Vol. 35 (2000), p.4557.

Google Scholar

[36] K.H. Lee and S.I. Hong: J. Mater. Res. Vol. 18 (2003), p.2194.

Google Scholar

[37] Y. Sakai, K. Inoue, T. Asano, H. Wada and H. Waeda: Appl. Phys. Lett. Vol. 59 (1991), p.2965.

Google Scholar

[38] L. Zhang and L. Meng: Mater. Sci. Technol. Vol. 19 (2003), p.75.

Google Scholar

[39] L. Zhang, L. Meng and J.B. Liu: Scr. Mater. Vol. 52 (2005), p.587.

Google Scholar

[40] L. Zhang and L. Meng: Scr. Mater. Vol. 52 (2005), p.1187.

Google Scholar

[41] L. Zhang and L. Meng: Acta Metall. Sinica Vol. 41 (2005), p.255.

Google Scholar

[42] W.B. Lee, E.H. Yoon and S.B. Jung: J. Mater. Sci. Lett. Vol. 22 (2003), p.1751.

Google Scholar

[43] G. Frommeyer and G. Wassermann: Acta Metall. Vol. 23 (1975), p.1353.

Google Scholar

[44] L. Zhang and L. Meng: Mater. Lett. Vol. 58 (2004), p.3888.

Google Scholar

[45] H.J. Kwon and S.I. Hong: J. Alloys Comp. Vol. 327 (2001), p.161.

Google Scholar

[46] S.I. Hong, P.H. Kim and Y.C. Choi: Scr. Mater. Vol. 51 (2004), p.95.

Google Scholar

[47] A. Gaganov, J. Freudenberger, W. Grünberger and L. Schultz: Z. Metallkd. Vol. 95 (2004), p.425.

Google Scholar

[48] L. Zhang, L. Meng: The Chinese Journal of Nonferrous Metals Vol. 15 (2005), p.751.

Google Scholar

[49] Y. Champion, C. Langlois, S. Guérin-Mailly, P. Langlois, J. Bonnentien and M.J. Hÿtch: Science Vol. 300 (2003), p.310.

DOI: 10.1126/science.1081042

Google Scholar

[50] L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian and K. Lu: Science Vol. 304 (2004), p.422.

Google Scholar

[51] H. Conrad: Mater. Sci. Eng. A Vol. 341 (2003), p.216.

Google Scholar

[52] C. Hans and J. Kang: Mater. Sci. Eng. A Vol. 391 (2005), p.272.

Google Scholar

[53] D. Wolf, V. Yamakov, S.R. Phillpot, A. Mukherjee and H. Gleiter: Acta Metall. Vol. 53 (2005), p.1�.

Google Scholar

[54] S. Ohsaki, K. Yamazaki and K. Hono: Scr. Mater. Vol. 48 (2003), p.1569.

Google Scholar

[55] D.G. Morris, A. Benghalem and M.A. Morris-Muńoz: Scr. Mater. Vol. 41 (1999), p.1123.

Google Scholar

[56] J.D. Verhoeven, H.L. Downing, L.S. Chumbley and E.D. Gibson: J. Appl. Phys. Vol. 65 (1989), p.1293.

Google Scholar

[57] D. Raabe and D. Mattissen: Acta Mater. Vol. 46 (1998), p.5973.

Google Scholar

[58] D. Raabe and D. Mattissen: Acta Mater. Vol. 47 (1999), p.769.

Google Scholar

[59] D. Mattissen, D. Raabe and F. Heringhaus: Acta Mater. Vol. 47 (1999), p.1627.

Google Scholar