Contribution of Z-Phase Precipitation to Recovery of Martensitic Structure in High Chromium Creep Resistant Steel

Abstract:

Article Preview

The precipitation site, main metallic composition and number density of Z phase have been investigated in T91 in order to clarify the influence of Z phase formation on recovery of martensitic structure and creep strength degradation. The Z phase particles were mainly present around prior austenite grain boundaries and/or packet boundaries in the steels crept at 550oC and 600oC. The Z phase particles were found in specimens crept at 550oC to 650oC. There was no indication of Z phase formation up to about 62475.0 h at 500oC and 14106.5 h at 700oC. The Nb content of Z phase observed at 550oC was lower than that at 600oC. The number density of Z phase measured at 550oC was lower that that at 600oC, indicating that the preferential recovery of martensitic lath structure around prior austenite grain boundary is not remarkable at 550oC in contrast with 600oC.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

3000-3005

Citation:

K. Sawada et al., "Contribution of Z-Phase Precipitation to Recovery of Martensitic Structure in High Chromium Creep Resistant Steel", Materials Science Forum, Vols. 539-543, pp. 3000-3005, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] H. Kushima, K. Kimura and F. Abe: Tetsu-to-Hagane Vol. 85 (1999), p.841.

[2] K. Kimura: Proc. PVP2005, 2005 ASME Pressure Vessels and Piping Divisin Conference, (2005), PVP2005-71039.

[3] A. Strang and V. Vodarek: Mater. Sci. Technol. Vol. 12 (1996), p.552.

[4] V. Vodarek and A. Strang: 7th Liege Conf. on Materials for Advanced Power Engineering, ed. by J. Lecomte-Beckers et al., Forshung-zentrum, Jülich GmbH, Jülich, II (2002), p.1223.

[5] K. Suzuki, S. Kumai, H. Kushima, K. Kimura and F. Abe: Tetsu-to-Hagane Vol. 86 (2000), p.550.

[6] R. Ishii, Y. Tsuda, M. Yamada and K. Kimura: Tetsu-to-Hagane Vol. 88 (2002), p.36.

[7] K. Sawada, M. Taneike, K. Kimura and F. Abe: ISIJ Int. Vol. 44 (2004), p.1243.

[8] H. Heuser and C. Jochum: Proc. 3rd Conf. on Advances in Material Technology for Fossil Power Plants, ed. by R. Viswanathan et al., The Institute of Materials, (2001), p.249.

[9] NRIM Creep Data Sheet, No. 43 (National Research Institute for Metals, Tokyo 1996).

[10] M. Taneike, F. Abe and K. Sawada: Nature Vol. 424 (2003), p.294.

[11] K. Hamada, K. Tokuno, Y. Tomita, H. Mabuchi and K. Okamoto: ISIJ Int. Vol. 35 (1995).

[12] M. Igarashi, H. Semba, H. Okada, H. Okubo, S. Muneki, K. Yamada and F. Abe: Proc. 9th Ultra-Steel Workshop, National Institute for Materials Science, (2005), p.96.

[13] M. Hättestrand and H.O. Andrén: Micron Vol. 32 (2001), p.789.

[14] G. Gotz and W. Blum: Mater. Sci. Eng. Vol. A348 (2003), p.201.

[15] I. Letofsky-Past, P. Warbrichler, F. Hofer, E. Letofsky and H. Cerjak: Z. Metallkd. Vol. 95 (2004), p.18.

[16] K. Sawada, K. Kubo, T. Hara and F. Abe: 7th Liege Conf. on Materials for Advanced Power Engineering, ed. by J. Lecomte-Beckers et al., Forshung-zentrum, Jülich GmbH, Jülich, II (2002), p.1181.

[17] H. Danielsen and J. Hald: Proc. 4th International Conf. on Advances in Materials Technology for Fossil Power Plants, ed. by R. Viswanathan et al., ASM International, (2004), p.999.

[18] T. Onizawa, T. Wakai, M. Ando and K. Aoto: Proc. Creep and Fracture in High Temperature Components - Design and Life Assessment Issues, ed. by I.A. Shibli et al., DEStech Publications, inc., (2005), p.130.

[19] K. Suzuki, S. Kumai, H. Kushima, K. Kimura and F. Abe: Tetsu-to-Hagane Vol. 89 (2003), p.691.

[20] K. Suzuki, S. Kumai, Y. Toda, H. Kushima and K. Kimura: ISIJ Int. Vol. 43 (2003), p.1089.