Recent Activities on Directional Solidification at the State Key Laboratory of Solidification Processing

Article Preview

Abstract:

Directional solidification technique permits materials to grow along specific orientation, in order to obtain mechanical and/or physical anisotropy. The present research attempts to introduce the research work in the field of processing of some advanced materials by innovative directional solidification techniques performed at State Key Laboratory of Solidification Processing and with author’s intended research work. The paper deals with the specific topics on state of the art of directional solidification: single crystal superalloy and Nd-Fe-B alloys under high thermal gradient, Cu-Ni alloys under deep supercooling of the melt. The relevant solidification phenomena, such as morphological evolution, crystal growth for multi-phases in the processing of directional solidification, are discussed briefly. The trends of developments of directional solidification techniques are also prospected.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

3106-3111

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. L. VerSnyder and R. W. Guard: Trans. Am. Soc. Metals, Vol. 52 (1960), p.485.

Google Scholar

[2] X. M. Mao, Z. X. Shi, L. Y. Wang and H. Z. Fu: Met. Sci. Techn., Vol. 2, (1983), p.28 (In Chinese).

Google Scholar

[3] M. Konter and M. Thumann: J. Mater. Proces. Techn., Vol. 117 (2001), p.386.

Google Scholar

[4] L. Lohmueller, W. Esser, J. Grossmann, M. Hoerdler, J. Preuhs and R. F. Singer: in T. M. Pollock, R. D. Kinssinger, R. R. Bowman, K. A. Green, M. McLean, S. Olson and J. J. Schirra (Eds. ), Superalloy 2000, TMS, Warrendale, 2000, p.181.

Google Scholar

[5] M. Konter, E. Kats and N. Hofmann: in T. M. Pollock, R. D. Kinssinger, R. R. Bowman, K. A. Green, M. McLean, S. Olson, J. J. Schirra (Eds. ), Superalloy 2000, TMS, Warrendale, 2000, p.189.

Google Scholar

[6] L. Liu, J. Zhang , T.W. Hang and H. Z. Fu: Mater. Sci. Forum, Vols. 475-479 (2005), p.665.

Google Scholar

[7] X. M. Mao, J. G. Li and H. Z. Fu: Mater. Sci. Eng., Vol. A183 (1994), P. 133.

Google Scholar

[8] J.G. Li, X. M. Mao and H. Z. Fu: Acta Metall. Sin. (Eng. Ed. ) A, Vol. 4 (1991), p.71.

Google Scholar

[9] H. Z. Fu and X.G. Geng: Sci. Techn. Adv. Mat., Vol. 2 (2001), p.197.

Google Scholar

[10] H. Z. Fu and Z. J. Wang: Chinese J. Mater. Res., Vol. 10 (1996), p.253.

Google Scholar

[11] H. Z. Fu and F. Q. Xie: Science and Technology of Advanced Materials, Vol. 2 (2001), P. 193.

Google Scholar

[12] R. Herman, I. Baecher, W. Loeser and L. Schultz: J. Magnetism and Magnetic Materials, Vols. 196-197 (1999), p.737.

Google Scholar

[13] T. Kawase, Y. Nakamura, T. Izumi, K. Murata and Y. Shiohara: Physica C, Vols. 357-360 (2001), p.673.

Google Scholar

[14] M. Mueller: Crystal Growth from the Melt, Springer-Verlag, Berlin, (1988).

Google Scholar

[15] M. L. Clemers, A. Price and R. S. Bellows: JOM, Vol. 55 (3), (2003), p.27.

Google Scholar

[16] A. Sayir and S. C. Farmer: Acta. Mater., Vol. 48 (2000), p.4691.

Google Scholar