Properties of Boron Fiber Reinforced Aluminum Matrix Composites Fabricated by Pulsed Current Hot Pressing (PCHP)

Article Preview

Abstract:

Boron-fiber-reinforced Al-matrix composite was fabricated by a pulsed current hot pressing (PCHP) process at a pressure of 32MPa for 600s. It was found that the boron fiber and the Al-matrix were well bonded when the PCHP process was performed at a holding temperature of 773K. No interfacial reaction layer was observed along the interface between the boron fiber and the matrix when PCHP was done at 773K for 600s. Tensile deformation carried out at room temperature for the composite showed that the tensile yield stress increased with increasing volume fraction of the boron fiber in the composite. The composite with 17.2 vol.% of boron fiber presented a tensile yield stress of 600MPa. This value was about 90% the yield stress estimated by a force equilibrium equation of a composite taking into account the direction of fiber axis.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

3139-3144

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Masutomi: J. Japan Reinforced Plastics Soc., 47(2001), 349-352.

Google Scholar

[2] M. A. Wright : Metall. Mater. Trans. A, 6A(1975)129-134.

Google Scholar

[3] G. F. Lucas and T. R. Mcnelly : Metall. Mater. Trans. A, 7A(1976)1317-1324.

Google Scholar

[4] Z. P. Luo and C. Y. Sun: Mater. Characterization, 50(2003)51-58.

Google Scholar

[5] Y. C. Qin, S. Y. He and D. Z. Yang : Mater. Chemistry and Physics, 86(2004)204-209.

Google Scholar

[6] A. Kelly: Fiber Strength Materials, John Wiley & Sons Co., (1979), 578.

Google Scholar

[7] N. Tamari, T. Tanaka, K. Tanaka, I. Kondo, M. Kawahara and M. Tokita: J. Ceram. Soc. Japan 103(1995) 12-17.

Google Scholar

[8] A. Sugiyama, K. Kobayashi, K. Ozaki, T. Nishio and A. Matsumoto: J. Japan Inst. Metals, 62(1998) 1082-1088.

Google Scholar

[9] K. Mizuuchi, M. Fukusumi, M. Sugioka, M. Tanaka and M. Itami: KAGAKU TO KOGYO(in Japanese), 74(2000) 100-105.

Google Scholar

[10] K. Mizuuchi, K. Inoue, K. Hamada, M. Sugioka, M. Itami and M. Kawahara: Proc. SPIE EUROPTO Series Vol. 4073, 5th European Conf. Smart Structures and Materials, ed by P. F. Gobin and C. M. Friend, (SPIE, Bellingham, WA, USA, 2000)pp.78-87.

DOI: 10.1117/12.396419

Google Scholar

[11] K. Mizuuchi, K Inoue, K. Hamada, M. Sugioka, M. Fukusumi, M. Itami and M. Kawahara: 8th Annual Inter. Conf. on Composites Engineering, ed by D. Hui, (ICCE, New Orleans, LA, USA, 2001)pp.643-644.

Google Scholar

[12] K. Mizuuchi, M. Sugioka, M. Fukusumi, M. Itami, Y. Okanda and M. Kawahara: KAGAKU TO KOGYO(in Japanese), 76(2002) 212-129.

Google Scholar

[13] K. Mizuuchi, K. Inoue, M. Sugioka, M. Itami and M. Kawahara: J. Japan Inst. Metals, 67(2003), 141-144.

Google Scholar

[14] K. Mizuuchi, K. Inoue, M. Sugioka, M. Itami and M. Kawahara: Mater. Sci. Forum, 426(2003)1757-1762.

Google Scholar

[15] K. Mizuuchi, K. Inoue, M. Sugioka, M. Itami and M. Kawahara: J. Japan Inst. Metals, 67(2003), 472-480.

Google Scholar

[16] K. Mizuuchi, K. Inoue, M. Sugioka, M. Itami and M. Kawahara: J. Japan Inst. Metals, 67(2003), 481-486.

Google Scholar

[17] K. Mizuuchi, K. Inoue, M. Sugioka, M. Itami and M. Kawahara: Mater. Trans. 44 (2004) 249-256.

Google Scholar

[18] K. Mizuuchi, K. Inoue, M. Sugioka, M. Itami and M. Kawahara: Mater. Sci. Eng. A A368 (2004) 260-268.

Google Scholar

[19] K. Mizuuchi, K. Inoue, M. Sugioka, M. Itami and M. Kawahara: Mater. Sci. Eng. A, A367 (2004) 343-349.

Google Scholar

[20] K. mizuuchi, K. Inoue, M. Sugioka, M. Itami, M. Kawahara and I. Yamauchi: J. Japan Inst. Metals, 68(2004)1083-1085.

Google Scholar