Microstructure Evolution and Microstructure-Property Relationships in Friction Stir Processing of NiAl Bronze

Article Preview

Abstract:

Friction stir processing (FSP) has been employed for localized modification and control of microstructures in NiAl bronze materials, which are widely utilized for marine components. The thermomechanical cycle of FSP results in homogenization and refinement and the conversion of microstructures from a cast to a wrought condition within stir zones in the material. However, the direct measurement of stir zone temperatures, strains, strain rates and cooling rates is difficult due to steep gradients and transients in these quantities, and this is an impediment in the assessment of FSP-induced microstructures and properties. Quantitative microstructure analyses following FSP of cast NiAl bronze materials have been used to develop estimates of stir zone thermomechanical cycles. The estimation procedures will be reviewed and the microstructure-based estimates will be compared to results from computational models and embedded thermocouples measurements. Stir zone microstructures comprise a mixture of primary α grains and transformation products of the β that formed during processing. Recrystallization in the primary α occurred due to particle-stimulated nucleation in this low stacking fault energy material. Factors that influence the distribution of strength and ductility in the stir zone appear to include the mixture of microstructure constituents and gradients in microstructure due to gradients in processing conditions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

3745-3750

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith and C.J. Daws: G.B. Patent Application No. 9125978. 8, December, 1991; U.S. Patent No. 5460317, October, (1995).

Google Scholar

[2] R.S. Mishra: Adv. Mater. Proc. Vol. 161 (2003), p.43.

Google Scholar

[3] R.S. Mishra, Z.Y. Ma and I. Charit: Mater. Sci. Engng. A Vol. A341 (2003) p.307.

Google Scholar

[4] Z.Y. Ma, R.S. Mishra and M. W. Mahoney: Friction Stir Welding and Processing II (TMS, Warrendale, PA, 2003, eds. K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin and T. Lienert) pp.221-30.

Google Scholar

[5] R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara and A.K. Mukherjee: Scripta Mater. Vol. 42 (2000) p.163.

Google Scholar

[6] R.S. Mishra and M.W. Mahoney: Mater. Sci. Forum Vol. 357-359 (2001) p.507.

Google Scholar

[7] Z.Y. Ma, R.S. Mishra and M.W. Mahoney: Acta Mater. Vol. 50 (2002) p.4419.

Google Scholar

[8] I. Charit and R.S. Mishra: Mater. Sci. Eng. A Vol. A359 (2003) p.290.

Google Scholar

[9] Z.Y. Ma, R.S. Mishra M.W. Mahoney, R. Grimes: Mater. Sci. Eng. A Vol. A351 (2003) p.148.

Google Scholar

[10] Y.S. Sato, M. Urata and H. Kokawa: Metal. Mater. Trans. A Vol. 33A (2002) p.625.

Google Scholar

[11] S.H.C. Park, Y.S. Sato and H. Kokawa: Scripta Mater. Vol. 49 (2003) p.161.

Google Scholar

[12] D. Zhang, M. Suzuki and K. Maruyama: Scripta Mater. Vol. 52 (2005) p.899.

Google Scholar

[13] H.S. Park, T. Kimura, T. Murakami, Y. Nagano, K. Nakata and M. Ushio: Mater. Sci. Eng. A, , Vol. A371 (2004) p.160.

Google Scholar

[14] Y.S. Sato, T.W. Nelson and C.J. Sterling: Acta Mater. Vol. 53 (2005) p.637.

Google Scholar

[15] A.P. Reynolds, E. Hood and W. Tang: Scripta Mater. Vol. 52 (2005) p.491.

Google Scholar

[16] M.W. Mahoney, W.H. Bingel, S.R. Sharma and R.S. Mishra: Mater. Sci. Forum Vol. 426 (2003) p.2843.

Google Scholar

[17] K. Oh-ishi, A. P. Zhilyaev, R. Williams and T. R. McNelley: Friction Stir Welding and Processing III (TMS, Warrendale, PA, 2005, eds. K.V. Jata, M.W. Mahoney, R.S. Mishra and T.J. Lienert) p.107.

Google Scholar

[18] I. Charit and R.S. Mishra: Acta Mater. Vol. 53 (2005) p.4211.

Google Scholar

[19] K. Oh-ishi and T.R. McNelley: Metall. Mater. Trans. A Vol. 35A (2004) p.2951.

Google Scholar

[20] K. Oh-ishi and T.R. McNelley: Metall. Mater. Trans. A Vol. 36A (2005) p.1575.

Google Scholar

[21] J.L. Robbins, O.C. Shepard and O.D. Sherby: J. Iron Steel Inst. Vol. 202 (1964) p.804.

Google Scholar

[22] O.D. Sherby, B. Walser, C.M. Young and E.M. Cady: Scripta Metall. Vol. 9 (1975) p.569.

Google Scholar

[23] B. Walser and O.D. Sherby: Metall. Trans. A, Vol. 10A (1979) p.1461.

Google Scholar

[24] P.B. Prangnell and C.P. Heason: Acta Mater. Vol. 53 (2005) p.3179.

Google Scholar

[25] J.K. MacKenzie: Biometrika Vol. 45 (1958) p.229.

Google Scholar

[26] G.R. Canova, U.F. Kocks and J.J. Jonas: Acta Metall. Vol. 32 (1984) p.211.

Google Scholar

[27] F.J. Humphreys: Acta Metall. Vol. 25 (1977) p.1323.

Google Scholar

[28] J. Askill: Tracer Diffusion Data for Metals, Alloys and Simple Oxides (IFI Plenum, New York, NY, 1970) pp.32-45.

DOI: 10.1007/978-1-4684-6075-9_3

Google Scholar

[29] A. Askari, S. Silling, B. London and M.W. Mahoney: Friction Stir Welding and Processing, (TMS, Warrendale, PA, 2001, eds. K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin and D. P. Fields) pp.43-50.

Google Scholar