Creep Property Evaluation of Heat-Resistant Steels by Small Punch Creep Test

Abstract:

Article Preview

The recently developed small punch (SP) creep test was applied to four different heatresistant ferritic steels, namely, two kinds of conventional ferritic steels which had been actually used in the high-temperature components for long periods and two advanced high chromium ferritic steels for fusion reactor materials to investigate the applicability of the SP creep test. The ratio of the load of SP creep test to the stress of standard uniaxial creep test was calculated so that both the creep rupture curves (load/stress versus Larson-Miller parameter curves) were overlapped to convert the results of SP creep test into those of standard test. As a result, the ratio was determined to be 2.4, irrespective of the kind of ferritic steel. This result indicates that the creep rupture strength of heat-resistance ferritic steels can be estimated using a miniaturized plate-type specimen and this conversion coefficient 2.4 independent of the kind of ferritic steel.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

4434-4439

Citation:

S. Komazaki et al., "Creep Property Evaluation of Heat-Resistant Steels by Small Punch Creep Test", Materials Science Forum, Vols. 539-543, pp. 4434-4439, 2007

Online since:

March 2007

Export:

Price:

$38.00

[1] J. Kameda and O. Buck: Mater. Sci. Eng. Vol. 83�(1986), p.29.

[2] T. Misawa, T. Adachi, M. Saito and Y. Hamaguchi: J. Nucl. Mater. Vol. 150�(1987), p.194.

[3] Y. -H. Joo, T. Hashida and H. Takahashi: J. Testing and Evaluation Vol. 20�(1992), p.6.

[4] X. Mao, T. Shoji and H. Takahashi: J. Testing and Evaluation Vol. 15�(1987), p.30.

[5] X. Mao and H. Takahashi: J. Nucl. Mater. Vol. 150�(1987), p.42.

[6] S. Komazaki, S. Liu, I. Kwon, T. Hashida, H. Takahashi and H. Nakajima: Transactions of the Japan Society of Mechanical Engineers�A Vol. 70�(2004), p.273.

[7] S. Liu, S. Komazaki, I. Kwon, T. Hashida, Takahashi and H. Nakajima: Transactions of the Japan Society of Mechanical Engineers�A Vol. 70�(2004), p.628.

[8] S. Komazaki, T. Shoji and K. Takamura: J. Eng. Mater. Tech. Vol. 127�(2005), p.476.

[9] S. Komazaki, A. Koyama and T. Misawa: Materials Transactions Vol. 43�(2002), p.2213.

[10] J. Isselin, S. Wang, S. Komazaki and T. Shoji: Key Engineering Materials Vols. 297-300� (2005), p.980.

DOI: https://doi.org/10.4028/www.scientific.net/kem.297-300.980

[11] J.D. Parker�and J.D. �James: Developments in a Progressing Technology, ASME, PVP-Vol. 279 (1994), p.167.

[12] S. Tettamanti and R. Crudeli: Proc. of an International Symposium on Case Histories on Integrity and Failures in Industry, Milan, Italy (1999), p.895.

[13] S. Komazaki, T. Hashida, T. Shoji and K. Suzuki: J. Testing and Evaluation Vol. 28 (2000), p.249.

[14] M. L. Saucedo-Munoz, S. Komazaki, T. Takahashi, T. Hashida and T. Shoji: J. Materials Research Vol. 17 (2002), p. (1945).

[15] Y. Kohno: J. Plasma and Fusion Research�Vol. 76�(2000), p.368.

[16] K. Milička and F. Dobeš: Steels and Materials for Power Plants, EUROMAT-Volume 7, edited by P. Neumann, D. Allen and E. Tenckhoff (WILEY-VCH Verlag GmbH, Weinheim 2000), p.372.

[17] P.C. Zhai, T. Hashida, S. Komazaki and Q.J. Zhang: J. Testing and Evaluation Vol. 32 (2004), p.298.

[18] K.B. Yoon, T.K. Park and I.S. Jeong: KSME Journal�Vol. 25�(2001), p.1493.

Fetching data from Crossref.
This may take some time to load.