Creep Property Evaluation of Heat-Resistant Steels by Small Punch Creep Test

Article Preview

Abstract:

The recently developed small punch (SP) creep test was applied to four different heatresistant ferritic steels, namely, two kinds of conventional ferritic steels which had been actually used in the high-temperature components for long periods and two advanced high chromium ferritic steels for fusion reactor materials to investigate the applicability of the SP creep test. The ratio of the load of SP creep test to the stress of standard uniaxial creep test was calculated so that both the creep rupture curves (load/stress versus Larson-Miller parameter curves) were overlapped to convert the results of SP creep test into those of standard test. As a result, the ratio was determined to be 2.4, irrespective of the kind of ferritic steel. This result indicates that the creep rupture strength of heat-resistance ferritic steels can be estimated using a miniaturized plate-type specimen and this conversion coefficient 2.4 independent of the kind of ferritic steel.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

4434-4439

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Kameda and O. Buck: Mater. Sci. Eng. Vol. 83�(1986), p.29.

Google Scholar

[2] T. Misawa, T. Adachi, M. Saito and Y. Hamaguchi: J. Nucl. Mater. Vol. 150�(1987), p.194.

Google Scholar

[3] Y. -H. Joo, T. Hashida and H. Takahashi: J. Testing and Evaluation Vol. 20�(1992), p.6.

Google Scholar

[4] X. Mao, T. Shoji and H. Takahashi: J. Testing and Evaluation Vol. 15�(1987), p.30.

Google Scholar

[5] X. Mao and H. Takahashi: J. Nucl. Mater. Vol. 150�(1987), p.42.

Google Scholar

[6] S. Komazaki, S. Liu, I. Kwon, T. Hashida, H. Takahashi and H. Nakajima: Transactions of the Japan Society of Mechanical Engineers�A Vol. 70�(2004), p.273.

Google Scholar

[7] S. Liu, S. Komazaki, I. Kwon, T. Hashida, Takahashi and H. Nakajima: Transactions of the Japan Society of Mechanical Engineers�A Vol. 70�(2004), p.628.

Google Scholar

[8] S. Komazaki, T. Shoji and K. Takamura: J. Eng. Mater. Tech. Vol. 127�(2005), p.476.

Google Scholar

[9] S. Komazaki, A. Koyama and T. Misawa: Materials Transactions Vol. 43�(2002), p.2213.

Google Scholar

[10] J. Isselin, S. Wang, S. Komazaki and T. Shoji: Key Engineering Materials Vols. 297-300� (2005), p.980.

DOI: 10.4028/www.scientific.net/kem.297-300.980

Google Scholar

[11] J.D. Parker�and J.D. �James: Developments in a Progressing Technology, ASME, PVP-Vol. 279 (1994), p.167.

Google Scholar

[12] S. Tettamanti and R. Crudeli: Proc. of an International Symposium on Case Histories on Integrity and Failures in Industry, Milan, Italy (1999), p.895.

Google Scholar

[13] S. Komazaki, T. Hashida, T. Shoji and K. Suzuki: J. Testing and Evaluation Vol. 28 (2000), p.249.

Google Scholar

[14] M. L. Saucedo-Munoz, S. Komazaki, T. Takahashi, T. Hashida and T. Shoji: J. Materials Research Vol. 17 (2002), p. (1945).

Google Scholar

[15] Y. Kohno: J. Plasma and Fusion Research�Vol. 76�(2000), p.368.

Google Scholar

[16] K. Milička and F. Dobeš: Steels and Materials for Power Plants, EUROMAT-Volume 7, edited by P. Neumann, D. Allen and E. Tenckhoff (WILEY-VCH Verlag GmbH, Weinheim 2000), p.372.

Google Scholar

[17] P.C. Zhai, T. Hashida, S. Komazaki and Q.J. Zhang: J. Testing and Evaluation Vol. 32 (2004), p.298.

Google Scholar

[18] K.B. Yoon, T.K. Park and I.S. Jeong: KSME Journal�Vol. 25�(2001), p.1493.

Google Scholar