Three-Dimensional Observation and Growth Kinetics of Proeutectoid Ferrite Formed at Austenite Grain Boundary in a Low Carbon Microalloyed Steel

Article Preview

Abstract:

Three-dimensional observations of proeutectoid ferrite formed at grain boundary in an Fe-0.09%C-1.48%Mn vanadium microalloyed alloy was revealed by techniques of serial sectioning along with computer-aided reconstruction. The ferrite allotriomorphs nucleated at grain boundary edges were approximately prolate ellipsoids. Not all the ferrite allotriomorphs formed at grain boundary faces were oblate ellipsoids. The growth kinetics of ferrite allotriomorphs nucleated at grain boundary edges was greater than that of ferrite allotriomorphs nucleated at grain boundary faces.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

4578-4583

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.V. Kral and G. Spanos: Acta Mater. Vol. 47 (1999), p.711.

Google Scholar

[2] T.L. Wolfsdorf, W.H. Bender and P.W. Voorhees: Acta Mater. Vol. 45 (1997), p.2279.

Google Scholar

[3] R.T. Dehoff: Joural of Microscopy, Vol. 131 (1983), p.259.

Google Scholar

[4] F.N. Rhines, K.R. Craig and D.A. Rousse: Metall. Trans. Vol. 7A (1976), p.1729.

Google Scholar

[5] M. Peet, S.S. Babu, M. K. Miller, H.K.D.H. Bhadeshia: Scripta Mater. Vol. 50 (2004), p.1277.

Google Scholar

[6] W. Liu, G. E. Ice, B.C. Larson, W. Yang, J. Z. Tischer and J. D. Budai: Metall. Mater. Trans. Vol. 35A (2004), p. (1963).

Google Scholar

[7] A.J. Kubis, G.J. Shiflet, D.N. Dunn and R. Hull: Metall. Mater. Trans. Vol. 35A (2004), p. (1935).

Google Scholar

[8] K.M. Wu: Scripta Mater. Vol. 54 (2005), p.569.

Google Scholar

[9] J.R. Bradley, J.M. Rigsbee and H.I. Aaronson: Metall. Trans. A, Vol. 8A (1977), p.323.

Google Scholar

[10] M. Enomoto and H.I. Aaronson: Metall. Trans. Vol. 18A (1987), p.1547.

Google Scholar

[11] K. Oi, C. Lux and G. Purdy: Acta Mater. Vol. 48 (2000), p.2147.

Google Scholar

[12] H.B. Aaron and H.I. Aaronson: Acta Metall. Vol. 16 (1968), p.789.

Google Scholar

[13] J.R. Bradley and H.I. Aaronson: Metall. Trans. Vol. 8A (1977), p.317.

Google Scholar

[14] H.I. Aaronson, in: The Decomposition of Austenite by Diffusional Process, edited by V.F. Zackay and H.I. Aaronson/Interscience, New York (1962), p.387.

Google Scholar

[15] M. Enomoto, W.F. III Lange and H.I. Aaronson: Metall. Trans. A, Vol. 17A (1986), p.1399.

Google Scholar

[16] G. Spanos and M.V. Kral: Metall Trans A Vol. 36A (2005), p.1199.

Google Scholar

[17] G. Horvay and J.W. Cahn, Acta Met., Vol. 9 (1961), p.695.

Google Scholar

[18] J.R. Bradley: Ph. D thesis at Michigan Technological University (1977).

Google Scholar

[19] B. Uhrenius, in: Hardenability Concepts with Applications to Steel, edited by D.V. Doane and J.S. Kirkaldy, TMS-AIME (1978), p.28.

Google Scholar

[20] M. Enomoto, in: Phase Transformations in Metals (Uchida Rokakuho Publishing Co. Ltd, Japan 2000).

Google Scholar

[21] R.F. Sekerka and S.L. Wang, in: Lectures on the Theory of Phase Transformations, edited by H.I. Aaronson, TMS-AIME (1999), p.231.

Google Scholar

[22] J.R. Bradley and H.I. Aaronson: Metall. Trans. A, Vol. 12A (1981), p.1729.

Google Scholar