Effect of Mn Addition on the Mechanical Properties in Al-Cu-Li-Mg-Ag-Zr Alloys

Abstract:

Article Preview

The mechanical properties of Al–5%Cu–1.3%Li–0.4%Mg–0.4%Ag–1.16%Zr alloys without Mn and with 0.3%, 0.6% and 1.2% Mn have been investigated after the aging at the temperatures of 90, 150, 180, and 230 oC. With Mn addition the alloys show a good work-hardening property, and the elongation of alloys increases. With the 0.6% Mn the best elongation can be obtained. The strength of alloys with 0.3% or 1.2% Mn is lower than that of the alloy without Mn, whereas the strength of alloy with 0.6% Mn is almost same as that of the alloy without Mn. In the alloy with 0.6% Mn aged at 180 oC for 12 hours the optimum properties – combination of tensile strength and elongation, 620 MPa and over 12 %, respectively – are obtained. These favorable effects by a proper Mn addition are considered to come mainly from the Mn-dispersoid to prevent strain localization normally associated with the shearable precipitates.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

481-486

DOI:

10.4028/www.scientific.net/MSF.539-543.481

Citation:

D. S. Chung et al., "Effect of Mn Addition on the Mechanical Properties in Al-Cu-Li-Mg-Ag-Zr Alloys", Materials Science Forum, Vols. 539-543, pp. 481-486, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.