Nanotechnology: Better Materials for All Implants

Article Preview

Abstract:

Nanotechnology is being used to mimic structural components of our tissues in synthetic materials intended for various implant applications. Recent studies have highlighted that when compared to flat or micron rough surfaces, surfaces with nanofeatures promote optimal initial protein interactions necessary to mediate cell adhesion and subsequent tissue regrowth. This has been demonstrated for a wide range of implant chemistries (from ceramics to metals to polymers) and for a wide range of tissues (including bone, vascular, cartilage, bladder, and the central and peripheral nervous system). Importantly, these results have been seen at the in vitro and in vivo level. This short review paper will cover some of the more significant advancements in creating better implants through nanotechnology efforts.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

511-516

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.J. Webster, R. W, Siegel and R. Bizios, in: Bioceramics 11: 11 th International Symposium on Ceramics in Medicine, edited by R.Z. LeGeros and J.P. LeGeros, World Scientific (1998).

DOI: 10.1142/9789814527842

Google Scholar

[2] T.J. Webster, R.W. Siegel and R. Bizios: Nanostructured Materials Vol. 12 (1999), p.983.

Google Scholar

[3] T.J. Webster, R.W. Siegel and R. Bizios: Biomaterials Vol. 20 (1999), p.1221.

Google Scholar

[4] T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel and R. Bizios: J. Biomed. Mater. Res. Vol. 51(3) (2000), p.475.

Google Scholar

[5] T.J. Webster, R.W. Siegel and R. Bizios: Biomaterials Vol. 21 (2000), p.1803.

Google Scholar

[6] T.J. Webster, R.W. Siegel and R. Bizios, in: Bioceramics 13: 13 th International Symposium on Ceramics in Medicine Conference Proceedings, edited by S. Giannini and A. Moroni, Trans Tech Publications (2000), p.321.

Google Scholar

[7] T.J. Webster, in: Advances in Chemical Engineering, edited by J.Y. Ying, Vol 27, Academic Press (2001), p.125.

Google Scholar

[8] T.J. Webster, L.S. Schadler, R.W. Siegel and R. Bizios: Tissue Engineering Vol. 7(3) (2001), p.291.

Google Scholar

[9] T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel and R. Bizios: Biomaterials Vol. 22(11) (2001), p.1327.

Google Scholar

[10] T.J. Webster, R.W. Siegel and R. Bizios: Scripta Materialia Vol. 44 (2001), p.1639.

Google Scholar

[11] J.U. Ejiofor and T.J. Webster: Proceedings of the International Conference on Powder Metallurgy & Particulate Materials, June 8-12 (2003).

Google Scholar

[12] R. L. Price, M. C. Waid, K. M. Haberstroh and T. J. Webster: Biomaterials Vol. 24(11) (2003), p.1877.

Google Scholar

[13] K.E. Elias, R.L. Price and T.J. Webster: Biomaterials Vol. 23 (2000), 3279.

Google Scholar

[14] A. J. McManus, R. H. Doremus, R. W. Siegel and R. Bizios: J. of Biomed. Mater. Res. Vol. 72A(1) (2005), p.98.

Google Scholar

[15] S. Kay, A. Thapa, K.M. Haberstroh and T.J. Webster: Tissue Engineering Vol. 8 (2002), p.753.

Google Scholar

[16] P. R. Supronowicz, P.M. Ajayan, K.R. Ullmann, B.P. Arulanandam, D.W. Metzger and R Bizios: J. Biomed. Mat. Res. Vol. 59(3) (2002), p.499.

DOI: 10.1002/jbm.10015

Google Scholar

[17] R. Zhang and P.X. Ma: J. Biomed. Mater. Res. Vol. 45(4) (1999), p.285.

Google Scholar

[18] A. Thapa, T.J. Webster and K.M. Haberstroh: J. Biom. Mater. Res. Vol. 67(4) (2003), p.1374.

Google Scholar

[19] D. C. Miller, K. M. Haberstroh and T. J. Webster: J. Biomed. Mater. Res. Vol. 73(4) ( 2005), p.476.

Google Scholar

[20] G. E. Park, M. A. Pattison, K. Park and T. J. Webster: Biomaterials Vol. 26(16) (2005), p.3075.

Google Scholar

[21] J. Savaiano and T.J. Webster: Biomaterials Vol. 25 (2003), p.1205.

Google Scholar

[22] M.J. Dalby, M.O. Riehle, H. Johnstone, S. Affrossman and A.S.G. Curtis: Biomaterials 23 (2002), p.2945.

DOI: 10.1016/s0142-9612(01)00424-0

Google Scholar

[23] J. L. McKenzie, M. C. Waid, R. Shi and T. J. Webster: Biomaterials Vol. 25(78), pp.1309-1317.

Google Scholar

[24] M.P. Mattson, R.C. Haddon and A.M. Rao: J. Mole. Neuro. Vol. 14 (2000), p.75.

Google Scholar

[25] J.N. Turner, W. Shain, D.H. Szarowski, M. Anderson, S. Martins, M. Isaacson and H. G. Craighead: Exp. Neurology Vol. 156 (1999), p.33.

DOI: 10.1006/exnr.1998.6983

Google Scholar

[26] K. Torimitsu, Y. Furukawa and H. Tabei: 2002 ICCE Conf. Proc., San Diego (2002), p.795.

Google Scholar

[27] K.J. Klabunde, J. Strak, O. Koper, C. Mohs, D. Park, S. Decker, Y. Jiang, I. Lagadic and D. Zhang: J. Phys. Chem. Vol. 100 (1996), p.12141.

Google Scholar

[28] M. Sato, H. An and T.J. Webster: submitted to J. Biomed. Mater. Res. (2006).

Google Scholar