[1]
Bhadeshia, H. K. D. H. and Svensson, L.-E., "Modelling the Evolution of Microstructure in Steel Weld Metals", Mathematical Modelling of Weld Phenomena, eds H. Cerjak and K. E. Easterling, The Institute of Materials, London, 1993, pp.109-182.
Google Scholar
[2]
Cool, T., Bhadeshia, H. K. D. H. and MacKay, D. J. C., "The Yield and Ultimate Tensile Strength of Steel Welds", Materials Science and Engineering, 223A, pp.186-200, 1997.6 Strong Ferritic-Steel Welds
DOI: 10.1016/s0921-5093(96)10513-x
Google Scholar
[3]
Bhadeshia, H. K. D. H. and Svensson, L.-E., "Microstructure of submerged arc-weld deposits for high-strength steels", J. Materials Science, 24, pp.3180-3188, 1989.
DOI: 10.1007/bf01139039
Google Scholar
[4]
Bhadeshia, H. K. D. H. and Svensson, L.-E., "Design of submerged arc-weld deposits for high- strength steels", Proc. Weld Quality, The Role of Computers, Pergamon Press, Oxford, pp.71-788, July 1988.
DOI: 10.1016/b978-0-08-036614-2.50017-2
Google Scholar
[5]
Bhadeshia, H. K. D. H. and Waugh, A. R., "Bainite: An atom probe study of the incomplete reaction phenomenon", Acta Metallurgica, 30, pp.775-784, 1982.
DOI: 10.1016/0001-6160(82)90075-x
Google Scholar
[6]
Kalish, D. and Cohen, M., "Structural changes and strengthening in the strain tempering of martensite", Materials Science and Engineering, 6, pp.156-166, 1970.
DOI: 10.1016/0025-5416(70)90045-5
Google Scholar
[7]
Lord, M., "Design and Modelling of Ultra-High Strength Steel Weld Deposits", Ph.D. Thesis, University of Cambridge, 1998.
Google Scholar
[8]
"Effect of interpass temperature on properties of high strength weld metals", Svetsaren, No. 1, pp.53-58, 1999.
Google Scholar
[9]
Leslie, W. C., The Physical Metallurgy of Steels, McGraw-Hill, London, 1981.
Google Scholar
[10]
Murugananth, M., Bhadeshia, H. K. D. H., Keehan, E., Andr´en, H.-O. and Karlsson, L., Mathematical Modelling of Weld Phenomena 6, eds H. Cerjak and H. Bhadeshia, Maney Publishers, London, pp.205-230, 2002.
Google Scholar
[11]
Keehan E., Andr´en H. O., Karlsson L., Murugananth M., Bhadeshia H. K. D. H., Microstructural and mechanical effects of nickel and manganese on high strength steel weld metals, 6th Int. Conference on Trends in Welding Research, p.695700, Pine Mountain, Georgia, USA, April 1519, 2002.
Google Scholar
[12]
Murugananth, M., "Design of Welding Alloys for Creep and Toughness", Ph.D. Thesis, University of Cambridge, 2002.
Google Scholar
[13]
Keehan, E., Karlsson, L. and Andr´en, H.-O., "Influence of C, Mn and Ni on Strong Steel Weld Metals: Part 1, Effect of nickel", Science and Technology of Welding and Joining, 11, pp.1-8, 2006.
DOI: 10.1179/174329306x77830
Google Scholar
[14]
Keehan, E., Karlsson, L., Andr´en, H.-O. and Bhadeshia, H. K. D. H. "Influence of C, Mn and Ni on Strong Steel Weld Metals: Part 2, Increased Impact Toughness", Science and Technology of Welding and Joining, 11, pp.9-18, 2006.
DOI: 10.1179/174329306x77849
Google Scholar
[15]
Keehan, E., Karlsson, L., Andr´en, H.-O. and Bhadeshia, H. K. D. H. "Influence of C, Mn and Ni on Strong Steel Weld Metals: Part 3, Increased Strength", Science and Technology of Welding and Joining, 11, pp.19-24, 2006.
DOI: 10.1179/174329306x77858
Google Scholar
[16]
Chang, L. C. and Bhadeshia, H. K. D. H., "Microstructure of lower bainite formed at large undercoolings below the bainite start temperature", Materials Science and Technology, 12, pp.233-236, 1996. This article was processed using the LATEX macro package with TTP style
DOI: 10.1179/mst.1996.12.3.233
Google Scholar