A Finite Element Model and Experimental Verification for the Mechanical Properties of 2.5-D Braided Composites

Article Preview

Abstract:

As for 2.5-D layer-to-layer angle interlock braided composites, the cross section of the warp tow was represented in double-convex lens form, and the center line of the warp tow was along the sinusoid. The arranging characteristic of weft tow fibers along the cross section outline of the longitude fibers was studied in detail. A novel finite element model for 2.5-D braided composites was established to predict elastic modulus. The finite element software ANSYS was adopted to study the mechanical properties of the model and presented its stress nephogram, and the influence of the braided structure parameters on the elastic modulus of this material was analyzed in detail. To validate this model, qualified experimental samples were made by VARTM technique, and then tensile tests were performed to determine the mechanical properties. The results show that the conclusions of finite element method (FEM) fit well with the experimental values, and this model can be used to predict effectively the macro modulus of 2.5-D braided composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 546-549)

Pages:

1591-1596

Citation:

Online since:

May 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.M. Zhou, X.F. Wang, X.W. Wang and C.W. Zhou: Journal of Nanjing University of Aeronautics & Astronautics Vol. 36(2004), p.444.

Google Scholar

[2] T. Ishikawa and T.W. Chou: J Am Inst Aeronaut astronaut Vol. 21(1998), p.1714.

Google Scholar

[3] Y. Yan and C.X. Cheng: Acta Aeronautica et Astronautica Sinica Vol. 20(1999), p.289.

Google Scholar

[4] L.H. Yang, G.X. Qiu and G. Huang: Acta Materiae Compositae Sinica Vol. 17(2000), p.79.

Google Scholar

[5] B.N. Cox, W.C. Carter and N.A. Fleck: Acta Metallurgica et Materialia Vol. 42(1994), p.3463.

DOI: 10.1016/0956-7151(94)90479-0

Google Scholar

[6] J. Xu, B.N. Cox, M.A. Mcglockton and W.C. Carter: Acta Metallurgica et Materialia Vol. 43(1995), p.3511.

DOI: 10.1016/0956-7151(95)00057-3

Google Scholar

[7] A. Dalmaz, D. Ducret, R. Ei Guerjouma, P. Reynaud, P. Franciosi, D. Rouby, G. Fantozzi and J.C. Baboux: Composites Science and Technology Vol. 60(2000), p.913.

DOI: 10.1016/s0266-3538(99)00180-3

Google Scholar

[8] L. Cass, M.R. Elizalde and J. Mmartinez Esnaola: Composites Vol. 33(2002), p.1449.

Google Scholar

[9] Y. Jiang, J.X. Zhu, J.Z. Zhang and Z.G. Zhou: Fiber Composites Vol. 2(2003), p.7.

Google Scholar

[10] L.Q. Zhang, M.D. Zhu, X.Q. Qi and H.W. Guo: Fiber Glass Vol. 6(2002), p.6.

Google Scholar

[11] W.F. Dong, J. Xiao, Y. Li, H.Q. Wu and L.Q. Zhang: Journal of Nanjing University of Aeronautics & Astronautics Vol. 37(2005), p.659.

Google Scholar

[12] P. Vandeurzen, J. Ivens and I. Verpoest: Composites Science and Technology Vol. 56(1996), p.913.

Google Scholar

[13] E.J. Barbero, P. Lonetti and K.K. Sikkil: Composites Part B: Engineering Vol. 37(2006), p.137.

Google Scholar

[14] T. Zeng, L.Z. Wu and L.C. Guo: Materials science & engineering: A Vol. 366(2004), p.144.

Google Scholar

[15] S.P. Ng, P.C. Tse and K.K. Lau: Composites Part B: Engineering Vol. 29(1998), p.735.

Google Scholar

[16] H.Y. Sun, X. Qiao: Composites Science and Technology Vol. 57(1997), p.623.

Google Scholar

[17] Z.Y. Yang, Z.X. Lu, Z.G. Liu and Z.P. Li: Acta Materiae Compositae Sinca Vol. 22(2005), p.155.

Google Scholar

[18] K. Woo: Journal of Composite Materials Vol. 30(1996), p.985.

Google Scholar

[19] T.W. Zhou, J.J. Yu and G.M. Zhou: Acta Materiae Compositae Sinica Vol. 21(2004), p.155.

Google Scholar