A Finite Element Model and Experimental Verification for the Mechanical Properties of 2.5-D Braided Composites

Abstract:

Article Preview

As for 2.5-D layer-to-layer angle interlock braided composites, the cross section of the warp tow was represented in double-convex lens form, and the center line of the warp tow was along the sinusoid. The arranging characteristic of weft tow fibers along the cross section outline of the longitude fibers was studied in detail. A novel finite element model for 2.5-D braided composites was established to predict elastic modulus. The finite element software ANSYS was adopted to study the mechanical properties of the model and presented its stress nephogram, and the influence of the braided structure parameters on the elastic modulus of this material was analyzed in detail. To validate this model, qualified experimental samples were made by VARTM technique, and then tensile tests were performed to determine the mechanical properties. The results show that the conclusions of finite element method (FEM) fit well with the experimental values, and this model can be used to predict effectively the macro modulus of 2.5-D braided composites.

Info:

Periodical:

Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.

Pages:

1591-1596

Citation:

W. F. Dong et al., "A Finite Element Model and Experimental Verification for the Mechanical Properties of 2.5-D Braided Composites", Materials Science Forum, Vols. 546-549, pp. 1591-1596, 2007

Online since:

May 2007

Export:

Price:

$38.00

[1] G.M. Zhou, X.F. Wang, X.W. Wang and C.W. Zhou: Journal of Nanjing University of Aeronautics & Astronautics Vol. 36(2004), p.444.

[2] T. Ishikawa and T.W. Chou: J Am Inst Aeronaut astronaut Vol. 21(1998), p.1714.

[3] Y. Yan and C.X. Cheng: Acta Aeronautica et Astronautica Sinica Vol. 20(1999), p.289.

[4] L.H. Yang, G.X. Qiu and G. Huang: Acta Materiae Compositae Sinica Vol. 17(2000), p.79.

[5] B.N. Cox, W.C. Carter and N.A. Fleck: Acta Metallurgica et Materialia Vol. 42(1994), p.3463.

[6] J. Xu, B.N. Cox, M.A. Mcglockton and W.C. Carter: Acta Metallurgica et Materialia Vol. 43(1995), p.3511.

DOI: https://doi.org/10.1016/0956-7151(95)00057-3

[7] A. Dalmaz, D. Ducret, R. Ei Guerjouma, P. Reynaud, P. Franciosi, D. Rouby, G. Fantozzi and J.C. Baboux: Composites Science and Technology Vol. 60(2000), p.913.

DOI: https://doi.org/10.1016/s0266-3538(99)00180-3

[8] L. Cass, M.R. Elizalde and J. Mmartinez Esnaola: Composites Vol. 33(2002), p.1449.

[9] Y. Jiang, J.X. Zhu, J.Z. Zhang and Z.G. Zhou: Fiber Composites Vol. 2(2003), p.7.

[10] L.Q. Zhang, M.D. Zhu, X.Q. Qi and H.W. Guo: Fiber Glass Vol. 6(2002), p.6.

[11] W.F. Dong, J. Xiao, Y. Li, H.Q. Wu and L.Q. Zhang: Journal of Nanjing University of Aeronautics & Astronautics Vol. 37(2005), p.659.

[12] P. Vandeurzen, J. Ivens and I. Verpoest: Composites Science and Technology Vol. 56(1996), p.913.

[13] E.J. Barbero, P. Lonetti and K.K. Sikkil: Composites Part B: Engineering Vol. 37(2006), p.137.

[14] T. Zeng, L.Z. Wu and L.C. Guo: Materials science & engineering: A Vol. 366(2004), p.144.

[15] S.P. Ng, P.C. Tse and K.K. Lau: Composites Part B: Engineering Vol. 29(1998), p.735.

[16] H.Y. Sun, X. Qiao: Composites Science and Technology Vol. 57(1997), p.623.

[17] Z.Y. Yang, Z.X. Lu, Z.G. Liu and Z.P. Li: Acta Materiae Compositae Sinca Vol. 22(2005), p.155.

[18] K. Woo: Journal of Composite Materials Vol. 30(1996), p.985.

[19] T.W. Zhou, J.J. Yu and G.M. Zhou: Acta Materiae Compositae Sinica Vol. 21(2004), p.155.

Fetching data from Crossref.
This may take some time to load.