Forming Limit Diagrams for AA5083 under SPF and QPF Conditions

Abstract:

Article Preview

Forming Limit Diagrams (FLD’s) for AA5083 aluminum sheet were established under both Superplastic Forming (SPF) and Quick Plastic Forming (QPF) conditions. SPF conditions consisted of a strain rate of 0.0001/s at 500°C, while QPF conditions consisted of a strain rate of 0.01/s at 450°C. The forming limit diagrams were generated using uniaxial tension, biaxial bulge, and plane strain bulge testing. Forming limits were defined using two criteria: (1) macroscopic fracture and (2) greater than 2% cavitation. Very little difference was observed between the plane strain limits in the SPF and QPF conditions indicating comparable formability between the two processes with a commercial grade AA5083 material.

Info:

Periodical:

Materials Science Forum (Volumes 551-552)

Edited by:

K.F. Zhang

Pages:

129-134

Citation:

M. A. Kulas et al., "Forming Limit Diagrams for AA5083 under SPF and QPF Conditions", Materials Science Forum, Vols. 551-552, pp. 129-134, 2007

Online since:

July 2007

Export:

Price:

$41.00

[1] A.J. Barnes: Mat. Sci. Forum, Vol. 170-172 (1994) p.701.

[2] M.S. Rashid, C. Kim, E.F. Ryntz, F.I. Saunders, R. Verma, and S. Kim: US Patent #6, 253, 588, (2001).

[3] J.G. Schroth in: Advances in Superplasticity and Superplastic Forming, Ed. E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, TMS (2004), p.9.

[4] P.E. Krajewski in: Advances in Superplasticity and Superplastic Forming, Ed. E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, TMS (2004) p.173.

[5] M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley: Met. Mat. Trans A., Vol 36A, No. 5 (2005) p.1249.

[6] M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley: Met. Mat. Trans A., Vol 37A, No. 3 (2006) p.645.

[7] S.P. Keeler and W.A. Backofen: Trans. ASM, Vol. 56 (1963) p.25.

[8] S.P. Keeler: Metals Progress, October (1966) p.148.

[9] G.M. Goodwin: SAE Paper #680093 (1968).

[10] B. Taylor in: Metals Handbook, Ninth Edition, Vol. 8, Mechanical Testing, American Society for Metals, Metals Park, OH (1985) p.547.

[11] M.W. Mahoney, C.H. Hamilton, and A.K. Ghosh: Met. Trans. A, Vol. 14A (1983) p.1593.

[12] K.C. Chan and K.K. Chow: Int. J. Mech. Sci., Vol. 44(2002) p.1467.

[13] K.C. Chan and K.K. Chow: Materials Letters, Vol. 56 (2002) p.38.

[14] T. Naka, G. Torikai, R. Hino, and F. Yoshida: J. Mat. Proc. Tech., Vol. 113, No. 1-3 (2001) p.648.

[15] D.H. Bae, A.K. Ghosh and J.R. Bradley: Met. Mat. Trans. A, Vol. 34A, No. 11(2003) p.2449.

[16] J.R. Bradley in: Advances in Superplasticity and Superplastic Forming, Ed. E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, TMS (2004) p.109.

[17] J.R. Bradley and J.E. Carsley. Post-Form Properties of Superplastically Formed AA5083 Aluminum Sheet, in Advances in Superplasticity and Superplastic Forming, Ed. E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, TMS (2004).