Forming Limit Diagrams for AA5083 under SPF and QPF Conditions

Abstract:

Article Preview

Forming Limit Diagrams (FLD’s) for AA5083 aluminum sheet were established under both Superplastic Forming (SPF) and Quick Plastic Forming (QPF) conditions. SPF conditions consisted of a strain rate of 0.0001/s at 500°C, while QPF conditions consisted of a strain rate of 0.01/s at 450°C. The forming limit diagrams were generated using uniaxial tension, biaxial bulge, and plane strain bulge testing. Forming limits were defined using two criteria: (1) macroscopic fracture and (2) greater than 2% cavitation. Very little difference was observed between the plane strain limits in the SPF and QPF conditions indicating comparable formability between the two processes with a commercial grade AA5083 material.

Info:

Periodical:

Materials Science Forum (Volumes 551-552)

Edited by:

K.F. Zhang

Pages:

129-134

Citation:

M. A. Kulas et al., "Forming Limit Diagrams for AA5083 under SPF and QPF Conditions", Materials Science Forum, Vols. 551-552, pp. 129-134, 2007

Online since:

July 2007

Export:

Price:

$38.00

[1] A.J. Barnes: Mat. Sci. Forum, Vol. 170-172 (1994) p.701.

[2] M.S. Rashid, C. Kim, E.F. Ryntz, F.I. Saunders, R. Verma, and S. Kim: US Patent #6, 253, 588, (2001).

[3] J.G. Schroth in: Advances in Superplasticity and Superplastic Forming, Ed. E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, TMS (2004), p.9.

[4] P.E. Krajewski in: Advances in Superplasticity and Superplastic Forming, Ed. E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, TMS (2004) p.173.

[5] M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley: Met. Mat. Trans A., Vol 36A, No. 5 (2005) p.1249.

[6] M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley: Met. Mat. Trans A., Vol 37A, No. 3 (2006) p.645.

[7] S.P. Keeler and W.A. Backofen: Trans. ASM, Vol. 56 (1963) p.25.

[8] S.P. Keeler: Metals Progress, October (1966) p.148.

[9] G.M. Goodwin: SAE Paper #680093 (1968).

[10] B. Taylor in: Metals Handbook, Ninth Edition, Vol. 8, Mechanical Testing, American Society for Metals, Metals Park, OH (1985) p.547.

[11] M.W. Mahoney, C.H. Hamilton, and A.K. Ghosh: Met. Trans. A, Vol. 14A (1983) p.1593.

[12] K.C. Chan and K.K. Chow: Int. J. Mech. Sci., Vol. 44(2002) p.1467.

[13] K.C. Chan and K.K. Chow: Materials Letters, Vol. 56 (2002) p.38.

[14] T. Naka, G. Torikai, R. Hino, and F. Yoshida: J. Mat. Proc. Tech., Vol. 113, No. 1-3 (2001) p.648.

[15] D.H. Bae, A.K. Ghosh and J.R. Bradley: Met. Mat. Trans. A, Vol. 34A, No. 11(2003) p.2449.

[16] J.R. Bradley in: Advances in Superplasticity and Superplastic Forming, Ed. E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, TMS (2004) p.109.

[17] J.R. Bradley and J.E. Carsley. Post-Form Properties of Superplastically Formed AA5083 Aluminum Sheet, in Advances in Superplasticity and Superplastic Forming, Ed. E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, TMS (2004).

Fetching data from Crossref.
This may take some time to load.