First-Principles Calculations of Grain Boundary-Surface for Various Grain Boundaries with Different Energies in Aluminum

Article Preview

Abstract:

The grain boundary surface is the excess energy of the grain boundary as the lattice on one side of the grain is translated relative to the lattice on the other side of the grain. The maximum in the slope of the grain boundary surface determines the ideal shear strength for the grain boundary sliding. We presented the ideal shear strength for the grain boundary sliding in aluminum Σ3(11 2)[110] tilt grain boundary from the first-principles calculations. The ideal shear strength for the grain boundary sliding was much smaller than the ideal shear strength of a perfect single crystal.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 551-552)

Pages:

331-336

Citation:

Online since:

July 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Sakuma and K. Higashi: Mater. Trans. JIM Vol. 40 (1999), p.702.

Google Scholar

[2] A. P. Sutton and R. W. Balluffi: Interface in Crystalline Materials (Clarendon Press, Oxford, 1995).

Google Scholar

[3] R. Monzen and Y. Sumi: Philos. Mag. A Vol. 70 (1994), p.805.

Google Scholar

[4] G. H. Bishop, R. J. Harrison, T. Kwok, and S. Yip: J. Appl. Phys. Vol. 53 (1982), p.5596.

Google Scholar

[5] R. G. Hoagland and R. J. Kurtz: Philos. Mag. A Vol. 82 (2002), p.1073.

Google Scholar

[6] S. Namilae, N. Chandra, and T. G. Nieh: Scripta Mater. Vol. 46 (2002), p.49.

Google Scholar

[7] N. Chandra and P. Dang: J. Mater. Sci. Vol. 34 (1999), p.655.

Google Scholar

[8] A. F. Wright and S. R. Atlas: Phys. Rev. B Vol. 50 (1994), p.15248.

Google Scholar

[9] T. Uesugi, M. Kohyama, and K. Higashi: Phys. Rev. B Vol. 68 (2003), p.184103.

Google Scholar

[10] T. Uesugi, Y. Takigawa, and K. Higashi: Mater. Trans. Vol. 46 (2005), p.1117.

Google Scholar

[11] V. Vitek: Philos. Mag. Vol. 18 (1968), p.773.

Google Scholar

[12] J. Hartford, B. von Sydow, G. Wahnstrom, and B. I. Lundqvist: Phys. Rev. B Vol. 58 (1998), p.2487.

Google Scholar

[13] C. Molteni, N. Marzari, M. C. Payne, and V. Heine: Phys. Rev. Lett. Vol. 79 (1997), p.869.

Google Scholar

[14] G. Lu and N. Kioussis: Phys. Rev. B Vol. 64 (2001), p.024101.

Google Scholar

[15] T. Uesugi, K. Tsuchiya, M. Kohyama, and K. Higashi: Mater. Sci. Forum Vol. 447-448 (2004), p.27.

Google Scholar

[16] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos: Rev. Mod. Phys. Vol. 64 (1992), p.1045.

Google Scholar

[17] P. Hohenberg and W. Kohn: Phys. Rev. Vol. 136 (1964), p. B864.

Google Scholar

[18] W. Kohn and L. J. Sham: Phys. Rev. Vol. 140 (1965), p. A1133.

Google Scholar

[19] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais: Phys. Rev. B Vol. 46 (1992), p.6671.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[20] N. Troullier and J. L. Martins: Phys. Rev. B Vol. 43 (1991), p. (1993).

Google Scholar

[21] H. J. Monkhorst and J. D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[22] D. Wolf: Scripta Metall. Vol. 23 (1989), p. (1913).

Google Scholar