Local Structures of Si2(O,N)7 Ditetrahedra in J-Phase

Abstract:

Article Preview

Oxygen/nitrogen (O/N) configuration in RE-J-phase, RE4Si2O7N2 (RE = rare earth element), was simulated by the Monte Carlo method applied to O/N distribution models. Proportion of local structures of Si2(O,N)7 ditetrahedra and Si(O,N)4 tetrahedra in the J-phase was quantitatively assessed. For the Lu-J-phase model with the bridging site between two Si atoms being occupied by nitrogen atom, the Si2(O,N)7 ditetrahedra composed of O3≡Si–N–Si≡O2N (> 40 %), O3≡Si–N–Si≡O3 (c.a. 30 %), and O2N≡Si–N–Si≡O2N(c.a. 15 %). Tetrahedra of SiO3N and SiO2N2 were dominant and small amount of SiON3 tetrahedra coexisted. For La-J-phase model with the O/N occupancy of 0.1/0.9 at the bridging site, configurations of O3≡Si–O–Si≡O2N (c.a. 5%), O3≡Si–O–Si≡O3 (c.a. 3%), and O2N≡Si–O–Si≡O2N (c.a. 2%) were demonstrated in addition to the three configurations of ditretrahedra recognized in the Lu-J-phase. In La-J-phase coexistence of SiO4 tetrahedra was presented.

Info:

Periodical:

Edited by:

Hasan Mandal

Pages:

43-49

Citation:

J. Takahashi et al., "Local Structures of Si2(O,N)7 Ditetrahedra in J-Phase ", Materials Science Forum, Vol. 554, pp. 43-49, 2007

Online since:

August 2007

Export:

Price:

$38.00

[1] C. M. Fang, G. A. de Wijs, R. A. de Groot, R. Metselaar, H. T. Hintzen and G. de With: Chem. Mater. Vol. 12 (2000), p.1071.

[2] P. E. D. Morgan: J. Mater. Sci. Vol. 21 (1986), p.4305.

[3] R. H. Meinhold and K. J. D. MacKenzie: Solid State Nucl. Magn. Reson. Vol. 5 (1995), p.151.

[4] K. J. D. MacKenzie, G. J. Gainsfold and M. J. Ryan: J. Eur. Ceram. Soc. Vol. 16 (1996), p.553.

[5] G. Roult, P. Bacher, C. Liebaut, R. Marchand, P. Goursat and Y. Laurent: Acta Crystallogr. Sect. A Vol. A40 (Suppl. ) (1984), p. C226.

DOI: https://doi.org/10.1107/s0108767384093156

[6] J. Takahashi, H. Yamane, M. Shimada, Y. Yamamoto, N. Hirosaki, M. Mitomo, K. Oikawa, S. Torii and T. Kamiyama: J. Am. Ceram. Soc. Vol. 85 (2002), p. (2072).

[7] J. Takahashi, H. Yamane, Y. Yamamoto, N. Hirosaki, M. Mitomo, K. Oikawa, S. Torii, T. Kamiyama and M. Shimada: Key Engineering Materials Vol. 237-237 (2003), p.53.

DOI: https://doi.org/10.4028/www.scientific.net/kem.237.53

[8] J. Takahashi, H. Yamane, N. Hirosaki, Y. Yamamoto, T. Suehiro, T. Kamiyama and M. Shimada: Chem. Mater. Vol. 15 (2003), p.1099.

[9] R. Dupree, M. H. Lewis, G. Leng-Ward and D. S. Williams: J. Mater. Sci. Lett. Vol. 4 (1985), p.393.

[10] R. Dupree, M. H. Lewis and M. E. Smith: J. Am. Chem. Soc. Vol. 110 (1988), p.1083.

[11] R. Dupree, M. H. Lewis and M. E. Smith: J. Am. Chem. Soc. Vol. 111 (1989), p.5125.

[12] R. K. Harris, M. J. Leach and D. P. Thompson: Chem. Mater. Vol. 4 (1992), p.260.

[13] D. S. Hauck, R. K. Harris, D. C. Apperley and D. P. Thompson: J. Mater. Chem. Vol. 3 (1993), p.1005.

[14] M. I. Baraton, R. Marchand and P. Quintard: J. Mol. Struct. Vol. 115 (1984), p.91.

[15] K. P. J. O'Reilly, M. Cole, S. Hampshire and M. Redington: J. Mater. Sci. Lett. Vol. 12 (1993), p.271.

[16] K. R. Carduner, R. O. Carter III, M. J. Rokosz, C. Peters, G. M. Crosbie and E. D. Stiles: Chem. Mater. Vol. 1 (1989), p.302.

[17] R. K. Harris, M. J. Leach and D. P. Thompson: Chem. Mater. Vol. 1 (1989), p.336.

[18] J. Takahashi, H. Yamane, N. Hirosaki, Y. Yamamoto, M. Mitomo and M. Shimada: J. Eur. Ceram. Soc. Vol. 25 (2005), p.793.

[19] G. Chollon, R. Hany, U. Vogt and K. Berroth: J. Eur. Ceram. Soc. Vol. 18 (1998), p.535.

[20] P. E. D. Morgan: private communication.

[21] K. Liddell, H. P. Chua and D. P. Thompson: Sil. Ind. Vol. 69 (2004), p.25.