Effect of Cooling Rate on Glass Formation for Some Oxynitride Glasses

Abstract:

Article Preview

Rapid cooling rates and quenching have traditionally been associated with glass formation. Hampshire et al. [1] investigated oxynitride glasses cooled in a tungsten resistance furnace at approximately 200oC/min and found that fast cooling rates were only important near the limits of the glass-forming region. In the current work on various M-Si-Al-O-N (M=Y, La, Yb, Nd) systems, it was found that even at a relatively slow cooling rate glass formation was still possible for a wide range of compositions. Different cooling rates were investigated to determine the minimum cooling rate at which a glass will form. Quantitative X-ray analysis of melted compositions indicated the relative amounts of amorphous phase and crystalline phase.

Info:

Periodical:

Edited by:

Hasan Mandal

Pages:

25-30

Citation:

W. Redington et al., "Effect of Cooling Rate on Glass Formation for Some Oxynitride Glasses ", Materials Science Forum, Vol. 554, pp. 25-30, 2007

Online since:

August 2007

Export:

Price:

$38.00

[1] S. Hampshire, R. A. L. Drew and K. H. Jack: Phys. Chem. Glasses 26 (5) (1985), pp.182-186.

[2] P. K. Gupta: J. Amer. Ceram. Soc. 76 (5) (1993), pp.1088-1095.

[3] A. A. Cabral, A. A. D. Cardoso and E. D. Zanotto: J. Non-Cryst. Sol. 320 (2003), pp.1-8.

[4] C. S. Ray, S. T. Reis, R. K. Brow, W. Holand and V. Rheinberger: J. Non-Cryst. Sol. 351 (2005), pp.1350-1358.

[5] R. Schilling: Collective Dynamics of Nonlinear and Disordered Systems Ed. G. Radons, W. Just and P. Hussler, Springer (2004), p.172.

[6] G. Leng-Ward and M. H. Lewis: J. Mater. Sci. 21 (1986), pp.1647-1653.

[7] W-Y. Sun, P. Walls and D. P. Thompson: Non-Oxide Technical and Engineering Ceramics Edited by S. Hampshire, Elsevier Applied Science Pub. Ltd, Barking, Essex, UK, ( 1986) pp.105-117.

[8] K. H. Jack: Non-Oxide Technical and Engineering Ceramics Edited by S. Hampshire, Elsevier Applied Science Pub. Ltd, Barking, Essex, UK, 1986, pp.1-30.

[9] P. H. A. Roebuck: The Silicon-Oxygen-Nitrogen System, PhD thesis, University of Newcastle upon Tyne (1978).

[10] R. E. Loehman: J. Non-Cryst. Sol. 42 (1980), pp.433-446.

[11] I. J. McColm: Ceramic Science for Materials Technologists, Leonard Hill, Glasgow, 1983, p.156.

[12] K. H. Sun: J. Amer. Ceram. Soc., 30 (1947), p.277.

[13] D. Uhlmann: J. Non-Cryst. Sol. 7 (1972), p.337.

[14] M. C. Weinberg, D. R. Uhlmann and E. D. Zanotto: J. Amer. Ceram. Soc. 72 (11) (1989), p.2054-(2058).

[15] R. A. L. Drew, S. Hampshire and K. H. Jack: Progress in Nitrogen Ceramics Edited by F. R. Riley, Martinus Nijhoff, The Hague, The Netherlands, 1983, pp.323-330.

[16] A. Monshi and P. F. Messer: J. Mater. Sci. 26 (1991), pp.3623-3627.

[17] L. Alexander and H. P. Klug: Basic Aspects of X-Ray Absorption in Quantitative Diffraction Analysis of Powder Mixtures, Powder Diffraction 4 (2) (1989), pp.66-69 reprinted from Analytical Chemistry, 20 (10) (1948).

DOI: https://doi.org/10.1017/s0885715600016432

[18] W. Zhou, C. S. Ray & D. E. Day: Phys. Chem. Glasses, (in press).

[19] J. E. Shelby : Introduction to Glass Science and Technology, Royal Society of Chemistry, London, (2005), p.172.

[20] P. F. Becher, S. B. Waters, C. G. Westmoreland and L. Reister: J. Amer. Ceram. Soc. 85 (4) (2002), pp.897-902.

[21] P. F. Becher, M. J. Lance, M. K. Ferber, M. J. Hoffmann and R. L. Satet: J. Non-Cryst. Sol. 333 (2004), pp.124-128.

[22] R. L. Satet and M. J. Hoffmann: J. Euro. Ceram. Soc. 24 (2004), pp.3437-3445.

[23] F. Lofaj, R. Satet, M. J. Hoffmann and A. R. De Arellano Lopez: J. Euro. Ceram. Soc. 24 (2004), pp.3377-3385.