Formation of Ultrafine Grained Ferrite by Warm Deformation of Tempered Lath Martensite in Low Alloy Steels

Article Preview

Abstract:

Microstructure change during warm deformation of tempered lath martensite in Fe-2mass%Mn-C alloys with different carbon contents in the range between 0.1 and 0.8mass%C was investigated. Specimens of the alloys after being quenched and tempered at 923K for 0.3ks were compressed by 50% with a strain rate varying from 10-3 to 10-4s-1 at 923K. EBSD analysis of the deformed microstructures has revealed that fine equiaxed ferrite (α) grains surrounded by high-angle boundaries are formed by dynamic recrystallization (DRX). As carbon content increases, the DRX α grain size decreases. This could be attributed to the change in volume fraction of the cementite (θ) phase as boundary dragging particles. The sub-micron θ particles can suppress the coarsening of the DRX α grains by exerting a pinning effect on grain boundary migration. Furthermore, the fraction of recrystallized region increases by increasing carbon content, presumably due to a decrease in the martensite block width as an initial α grain size and a larger volume fraction of hard second phase (θ) particles. Both of these should increase inhomogeneous plastic deformation which promotes the recrystallization. It seems that continuous DRX is responsible for the formation of ultrafine α grains in the tempered lath martensite.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Pages:

557-562

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Niikura, M. Fujioka, Y. Adachi, A. Matsukura, T. Yokota, Y. Shirota and Y. Hagiwara: J. Mater. Process. Tech., Vol. 117, (2001), p.341.

Google Scholar

[2] D. H. Shin, B. C. Kim, Y. S. Kim and K. T. Park, Acta Mater., Vol. 48, (2000), p.2247.

Google Scholar

[3] N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa, Scripta Mater., Vol. 40, (1999), p.795.

Google Scholar

[4] Y. Matsumura and H. Yada, ISIJ Int., Vol. 27, (1987), p.492.

Google Scholar

[5] P. D. Hodgson, M. R. Hickson and R. K. Gibbs, Scripta Mater., Vol. 40, (1999), p.1179.

Google Scholar

[6] A. Najafi-Zadeh, J. J. Jonas and S. Yue, Metall. Trans. A, Vol. 23, (1992), p.2607.

Google Scholar

[7] A. Ohmori, S. Torizuka, K. Nagaim N. Koseki and Y. Kogo: Mater. Trans., Vol. 45, (2004), p.2224.

Google Scholar

[8] R. Song, D. Ponge, D. Raabe and R. Kaspar, Acta Mater., Vol. 53, (2005), p.845.

Google Scholar

[9] Y. D. Huang, W. Y. Yang and Z. Q. Sun, Journal of Mater. Process. Tech., Vol. 134, (2003), p.19.

Google Scholar

[10] L. Storojeva, D. Ponge, R. Kaspar and D. Raabe, Acta Mater., Vol. 52, (2004), p.2209.

Google Scholar

[11] F. J. Humphryes and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., (Elsevier, Amesterdam, 2004), p.417.

Google Scholar

[12] S. V. S. Narayana Murty, S. Torizuka, K. Nagai, N. Koseki and Y. Kogo: Scripta Mater. Vol. 52, (2005), p.713.

Google Scholar

[13] T. Maki, Proceeding of The 3rd International Conference on Advanced Structural Steels, Gyeongju, Korea, August (2006), p.68.

Google Scholar

[14] T. Furuhara, T. Yamaguchi, S. Furimoto and T. Maki: Materials Science Forum, Vol. 539-543, (2007), p.155.

DOI: 10.4028/www.scientific.net/msf.539-543.155

Google Scholar

[15] Y. Z. Bao, Y. Adachi, Y. Toomine, P. G. Xu, T. Suzuki and Y. Tomota, Scripta Mater., Vol. 53, (2005), p.1471.

Google Scholar

[16] F. J. Humphryes and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., (Elsevier, Amesterdam, 2004), p.461.

Google Scholar

[17] S. V. S. Narayana Murty, S. Torizuka, K. Nagai, T. Kitai and Y. Kogo, Scripta Mater., Vol. 53, (2005), p.763.

Google Scholar

[18] S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki, Acta Mater., Vol. 51, (2003), p.1789.

Google Scholar

[19] S. Morito, J. Nishikawa and T. Maki, ISIJ Int., Vol. 43, (2003), p.1475.

Google Scholar