Mechanical Behaviors of Ti-29Nb-13Ta-4.6Zr-XO for Biomedical Applications Subjected to Cold Working and Various Heat Treatments

Abstract:

Article Preview

The effect of oxygen content on aging behavior and invar characteristics of Ti-29Nb-13Ta-4.6Zr (TNTZ) were investigated. The age hardening of TNTZ aged at 573 K and 723 K is enhanced with the oxygen content. The ω phase precipitates and grows from early stage of aging in TNTZ regardless of the oxygen content when aged at 573 K. The lath-like shape α phase precipitated in TNTZ aged at 723 K increases in size with the oxygen content. The elastic modulus increases with the oxygen content and aging. The ω phase increase the elastic modulus to a greater extent than the increase due to the α phase. The tensile strength increases with the oxygen content and aging, while the elongation decreases. TNTZ with oxygen content of 0.1 mass% exhibits invar-like characteristics through severe cold working. A higher oxygen content suppresses the invar-like characteristics of TNTZ.

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Main Theme:

Edited by:

Young Won Chang, Nack J. Kim and Chong Soo Lee

Pages:

1471-1476

Citation:

M. Niinomi et al., "Mechanical Behaviors of Ti-29Nb-13Ta-4.6Zr-XO for Biomedical Applications Subjected to Cold Working and Various Heat Treatments", Materials Science Forum, Vols. 561-565, pp. 1471-1476, 2007

Online since:

October 2007

Export:

Price:

$38.00

[1] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro: Mat. Sci. Eng. A, Vol. A243 (1998), p.244.

[2] M. Niinomi: Metall. Mater. Trans. A, Vol. 33A (2002), p.477.

[3] M. Niinomi: Biomaterials, Vol. 24(2003), p.2673.

[4] T. Saito, T. Furuta, J. H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K, Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, T. Sakuma: Science, Vol. 300 (2003), p.464. 300 400 500 600 200.

DOI: https://doi.org/10.4028/www.scientific.net/msf.426-432.681

[2] [0] [4] [3] [2] [1] [1] [5] [6] As-Cold Rolled TNTZ0. 1 As-Cold Rolled TNTZ0. 2 As-Cold Rolled TNTZ0. 4 Temperature / K Thermal Expansion , ∆∆∆∆L/L (×××× 10--3) 300 400 500 600 200.

[2] [0] [4] [3] [2] [1] [1] [5] [6] As-Cold Rolled TNTZ0. 1 As-Cold Rolled TNTZ0. 2 As-Cold Rolled TNTZ0. 4 Temperature / K Thermal Expansion , ∆∆∆∆L/L (×××× 10--3) Fig. 9 Temperature dependence of thermal expansion in as-cold rolled TNTZ0. 1, TNTZ0. 2, and TNTZ0. 4. Temperature / K 300 400 500 600 200.

DOI: https://doi.org/10.3403/30280399

[2] [0] [4] [3] [2] [1] [1] [5] [6] Thermal Expansion , ∆∆∆∆L/L (×××× 10-- 3) As-Solutionized TNTZ0. 1 As-Solutionized TNTZ0. 2 As-Solutionized TNTZ0. 4 Temperature / K 300 400 500 600 200.

[2] [0] [4] [3] [2] [1] [1] [5] [6] Thermal Expansion , ∆∆∆∆L/L (×××× 10-- 3) As-Solutionized TNTZ0. 1 As-Solutionized TNTZ0. 2 As-Solutionized TNTZ0. 4 Fig. 8 Temperature dependence of thermal expansion in as-solutionized TNTZ0. 1, TNTZ0. 2, and TNTZ0. 4.