Analysis of Deformation Textures and Microstructure in ECAE Processed Copper Single Crystals via Route C

Article Preview

Abstract:

Equal channel angular extrusion (ECAE) is an effective means of producing ultrafine-grained materials with extraordinary mechanical properties. Texture evolution and microstructure in pure copper single crystals processed by ECAE for up to five passes via route C are investigated to understand mechanisms of plastic deformation and grain refinement during ECAE. The experimental textures after the third pass ECAE process recovers that after one pass ECAE process. The main textures approaches a stable one after four passes of ECAE process via Route C while the intensity of main texture components decreases gradually. Local TEM-OIM measurements shows that grain subdivision in ECAE-processed samples occurs with the formation of many low angle grain boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 561-565)

Pages:

929-932

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. M. Segal, Materials Science and Engineering A Vol. 197 (1995), p.157.

Google Scholar

[2] R. Z. Valiev, I. V. Islamgaliev, I. V. Alexandrov, Prog Mater Sci Vol. 45 (2000), p.103.

Google Scholar

[3] V. M. Segal, Materials Science and Engineering A Vol. 271 (1995), p.322.

Google Scholar

[4] D. J. Alexander, I. J. Beyerlein, In: Y. T Zhu, T. G. Langdon, R. Z. Valiev, S. L. Semiatin, D. H. Shin, T. C. Lowe, editors. Ultrafine-grained materials III. Charlotte (NC): TMS (2004), p.517.

Google Scholar

[5] Y. T. Zhu, T. C. Lowe, Mater Sci Eng A Vol. 291 (2000), p.46.

Google Scholar

[6] I. J. Beyerlein, R. A. Lebensohn, C. N. Tomé, Mater Sci Eng A Vol. 345 (2003), p.122.

Google Scholar

[7] S.Y. Li, I. J. Beyerlein, D. J. Alexander, Materials Science and Engineering A Vol. 431 (2006), p.339.

Google Scholar

[8] S. Y. Li, I. J. Beyerlein, C. T. Necker, D. J. Alexander, M. Bourke, Acta Materialia Vol. 52 (2004), p.4859.

Google Scholar

[9] L S. Tóth, R. A. Massion, L. Germain, et al. Acta Materialia Vol. 52 (2004), p.1885.

Google Scholar

[10] G. Wang, S.D. Wu, L. Zuo, C. Esling, et al. Mater Sci Forum Vol. 408-412 (2002), p.709.

Google Scholar

[11] Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, Acta Mater. Vol. 46 (1998), p.3317.

Google Scholar

[22] S. Ferrasse, V. M. Segal, K. T. Hartwig and R. E. Goforth, Metall. Mater. Trans. A Vol. 28 (1997), p.1047.

Google Scholar

[13] M. Furukawa, Y. Iwahashi, Z. Horita, et al. Mater. Sci. Eng. A Vol. 257 (1998), p.328.

Google Scholar

[14] H.J. Bunge, Texture Analysis in Materials Science (Butterworth, London 1982).

Google Scholar

[15] A. Gholinia, P. Bate, P. B. Prangnell, Acta Mater Vol. 50 (2002), p.2121.

Google Scholar