Finite Element Analysis of Optimum Back Pressure during Equal Channel Angular Pressing

Abstract:

Article Preview

Equal channel angular pressing (ECAP) is one of the most promising processes to fabricate ultra-fine grained materials. The material deformation is affected by die geometry, material behavior, friction and back pressure. The optimum back pressure for 1100Al during ECAP was studied. The effect of back pressure on deformation behavior, effective strain and deformation load were analyzed by using finite element software. The results show that the corner gap between the billet and the die in the external part of the deformation zone decreases and even disappears with the increase of back pressure, which can produce more uniform and larger strain in the billet. The deformation load enhances with the increase of back pressure. From the simulation results, it can be found out that the optimum back pressure for 1100Al pressed in the die of Φ=90° is about 30MPa.

Info:

Periodical:

Materials Science Forum (Volumes 575-578)

Edited by:

Jitai NIU, Zuyan LIU, Cheng JIN and Guangtao Zhou

Pages:

311-315

DOI:

10.4028/www.scientific.net/MSF.575-578.311

Citation:

F. J. Shi and L. G. Wang, "Finite Element Analysis of Optimum Back Pressure during Equal Channel Angular Pressing", Materials Science Forum, Vols. 575-578, pp. 311-315, 2008

Online since:

April 2008

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.