Experimental Estimation of Strain Rate during FSW of Al-Alloy Using Plane-Strain Compression

Abstract:

Article Preview

Friction stir welding (FSW) makes the stir zone with fine recrystallized grain structure. The recrystallized grains would be formed through dynamic recrystallization at high temperatures and high strain-rate. The present study experimentally simulated the dynamically recrystallized microstructure of a friction stir welded Al alloy 1050 produced at 600 rpm rotation and 100 mm/min travel speed, using combination of the plane-strain compression at various strain rates and the subsequent cooling along the cooling cycle of FSW. The equiaxed grain structures similar to the microstructure of the stir zone were produced at strain rates between 0.1 and 32 s-1; the grain size decreased with increasing strain rate. Strain rate during the FSW could be estimated to be about 1.8 s-1. The present study suggests that plane-strain compression test can simulate the recrystallized grain structure of the friction stir welds.

Info:

Periodical:

Materials Science Forum (Volumes 580-582)

Edited by:

Changhee Lee, Jong-Bong Lee, Dong-Hwan Park and Suck-Joo Na

Pages:

299-302

DOI:

10.4028/www.scientific.net/MSF.580-582.299

Citation:

K. Masaki et al., "Experimental Estimation of Strain Rate during FSW of Al-Alloy Using Plane-Strain Compression", Materials Science Forum, Vols. 580-582, pp. 299-302, 2008

Online since:

June 2008

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.