Effects of Al2O3 Particles Addition on Compressibility and Sinterability of Aluminium Powder Allows

Article Preview

Abstract:

There is considerable industrial potential for aluminium alloys and aluminium metal matrix composites fabricated via net shape press-and-sintering powder metallurgy using low-cost, elemental premixed powder. In this work, the compressibility and sinterability of premixed Al– 4.5Cu–0.7Si–0.5Mg powder alloy reinforced with Al2O3 particles was analyzed. The powders reinforced with increasing ceramic particle content were cold-pressed under increasing pressure and sintered at 600 oC for 40 minutes, in nitrogen atmosphere. The powders showed the typical compressibility curves and the presence of hard ceramic particles decreased the powder deformation capacity and, consequently, the powder compressibility. The sintering produced swelling of the parts, due to the poor wettability of liquid phase on the aluminium particles and to the Kirkendall effect caused by the difference in diffusivity of aluminium in copper and copper in aluminium. The presence of Al2O3 particles increased the swelling during sintering probably due to the sooner formation of liquid phase.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 591-593)

Pages:

907-912

Citation:

Online since:

August 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.M. Sherman: Mat. Sci. Forum Vol. 331-337 (2000), p.3.

Google Scholar

[2] J. Liu and M Kulak: Sci. Forum Vol. 331-337 (2000), p.127.

Google Scholar

[3] G.B. Schaffer, T.B. Sercombe and R.N. Lumley: Mater. Chem. Phys. Vol. 67 (2001), p.85.

Google Scholar

[4] Z.A. Munir: J. Mater. Sci. Vol. 14 (1979), p.2733.

Google Scholar

[5] R.N. Lumley and G.B. Schaffer: Scripta Mater. Vol. 39 (1998), p.1089.

Google Scholar

[6] T.B. Sercombe and G.B. Schaffer: Mat. Sci. Eng. A Vol. 268 (1999), p.32.

Google Scholar

[7] G. B. Schaffer, S. H. Huo, J. Drennan and G. J. Auchterlonie: Acta Mater. Vol. 49 (2001), p.2671.

Google Scholar

[8] E.M. Ruiz-Navas, M.L. Delgado, J.M. Torralba: J. MATER. SCI. Vol. 41 (2006), p.3735.

Google Scholar

[9] A R. Panelli and F. Ambrózio Filho: Powder Metall. Vol. 41 (1998), 131.

Google Scholar

[10] J.B. Fogagnolo, E.M. Ruiz-Navas, M.H. Robert and J.M. Torralba: Mat. Sci. Eng. A Vol. 355 (2003), p.50.

Google Scholar

[11] J.B. Fogagnolo, M.H. Robert and J.M. Torralba: Mat. Sci. Eng. A Vol. 426 (2006), p.85.

Google Scholar

[12] M.L. Hentschel and N.W. Page: J. Mater. Sci. Vol. 42 (2007), p.1261.

Google Scholar

[13] D. Poquillon, J. Lemaitre, V. Baco-Carles, Ph. Tailhades and J. Lacaze: Powder Tech. Vol. 126 (2002), p.65.

DOI: 10.1016/s0032-5910(02)00034-7

Google Scholar

[14] J. Gil Sevillano: J. Mater. Reseach Vol. 16 (2001), p.1238.

Google Scholar

[15] C. D. Turner and M. F. Ashby: Vol. 44 (1996), p.4521.

Google Scholar

[16] K.H. Min, S. P. Kang, B. -H. Lee, J. -K. Lee and Y. D. Kim: J. Alloys Comp. Vol. 419 (2006), p.290.

Google Scholar

[17] K.H. Min, S. P. Kang, D. -G. Kim and Y. D. Kim: J. Alloys Compd. Vol. 400 (2005), p.150.

Google Scholar

[18] M.L. Delgado, E.M. Ruiz-Navas, E. Gordo and J.M. Torralba: J. Mater. Process. Tech. Vol. 162-163 (2005), p.280.

Google Scholar

[19] J.M. Martín and F. Castro: J. Mater. Process. Tech. Vol. 143-144 (2003), p.814.

Google Scholar