First-Principles Study of the Mechanical Properties of Mg-Based Alloys with FCC and Hexagonal Structure

Abstract:

Article Preview

More and more research has been focused on the improvement of the mechanical properties and the optimal design of the new excellent Mg-based alloys. In spite of many experimental investigations, the theoretical studies of the mechanical properties are very scarce. First-principle calculations of the elastic constants and mechanical properties of typical Mg-based alloys become necessary to understand the fundamental mechanism governing the observed mechanical properties. In this paper, the single-crystal elastic constants Cijs of the typical fcc and hexagonal structured Mg-based alloys (Mg3Zn3Y2 and CaMg2) were calculated, using density functional theory within the generalized gradient approximation. Then the bulk modulus B, shear modulus G, Young’s modulus E, Poisson’s ratio ν and anisotropy value A were derived from single-crystal elastic constants. The mechanical properties such as the ductility and stiffiness of the alloys are analyzed and discussed in comparison with experimental observations.

Info:

Periodical:

Materials Science Forum (Volumes 610-613)

Main Theme:

Edited by:

Zhong Wei Gu, Yafang Han, Fu Sheng Pan, Xitao Wang, Duan Weng and Shaoxiong Zhou

Pages:

848-852

DOI:

10.4028/www.scientific.net/MSF.610-613.848

Citation:

N. Wang et al., "First-Principles Study of the Mechanical Properties of Mg-Based Alloys with FCC and Hexagonal Structure", Materials Science Forum, Vols. 610-613, pp. 848-852, 2009

Online since:

January 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.