Experimental Evaluation of the Size Effect on the Ductile and Brittle Fracture Toughness of a Steel Pressure Vessel

Article Preview

Abstract:

Experiments of fracture toughness with non-standard SENB specimens of five different thicknesses were performed to investigate the size effect on the ductile and brittle fracture for different temperatures. From the experimental results it is found that size effects both brittle and ductile fracture with the same trend but for different mechanical reasons. The ductile fracture toughness increases firstly with increased plastic deformation zone size and plastic fracture strain under general yielding conditions, and then drops down due to the plastic deformation zone size not changing much which is less than the residual ligament width and the increase of the proportion of the high stress triaxiality zone to the whole specimen. The fracture toughness of the lower shelf increases with increasing thickness of the plastic deformation zone size under small scale yielding conditions, and then drops down due to the increase of the high out-of-plane constraint.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-46

Citation:

Online since:

March 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.B. Pandey, B.S. Majumdar, D.B. Miracle: Metallurgical and materials transactions. Vol. 29A (1998), pp.1237-1243.

Google Scholar

[2] Robert Moskovic: Engineering fracture mechanics, Vol. 69 (2002), pp.511-530.

Google Scholar

[3] T. Pardoen, Y. Marchal, F. Delannay: Engineering Fracture Mechanics, Vol. 69 (2002), pp.617-631.

DOI: 10.1016/s0013-7944(01)00099-6

Google Scholar

[4] T. Pardoen, Y. Marchal, F. Delannay: J. Mech. Phys. Solids, Vol. 47 (1999), pp.2093-2123.

Google Scholar

[5] Xiaozhi Hu, Kai Duan: Cement and Concrete Research, Vol. 34 (2004), pp.1321-1330.

Google Scholar

[6] G.R. Odette, K. Edsinger G.E. Lucas, E. Donahue: ASTM STP 1329, Vol. 3(1998), p.298.

Google Scholar

[7] B.P. Pehrson, J.D. Landes: Fatigue & Fracture of Engineering Materials & Structures, Vol. 30 (2007), pp.73-86.

Google Scholar

[8] I.V. Orynyak, V.M. Torop: Engineering Fracture Mechanics, Vol. 52 (1995), pp.255-263.

Google Scholar

[9] Bluhm JI: ASTM Proc, Vol. 61(1961), pp.1324-31.

Google Scholar

[10] Y.L. Kang: Material science and engineer, Vol. 394A (2005), pp.312-139.

Google Scholar

[11] Landes.J. D, McCabe.D. E: ASTM STP, Vol. 833 (1984), pp.378-392.

Google Scholar

[12] D. Chae, D.A. Koss: Materials Science and Engineering, Vol. 366A (2004), pp.299-309.

Google Scholar

[13] Thak Sang Byun, Seok Hun Kim, Bong Sang Lee, In Sup Kim: Journal of Nuclear Materials, Vol. 277 (2000), pp.263-273.

Google Scholar

[14] Gurson: Journal of Engineering Material and Technology, Vol. 99 (1977), pp.2-15 Figures Specimen thickness Fracture toughness parameters B0 Bs -101234567.

Google Scholar

[5] [10] [15] [20] [25] [30] [35] Load (KN) CMOD(mm) 22mm 16mm 12mm 8mm 4mm Fig. 1 Fracture toughness VS specimen size schematically Fig. 2 Load/unload method Fig. 3 typical brittle fracture surface Fig. 4 typical ductile fracture surface -70 -60 -50 -40 -30 -20 -10 23. 5 24. 0 24. 5 25. 0 25. 5 26. 0 26. 5 Model: Boltzmann y = A2 + (A1-A2)/(1 + exp(x-x0)/dx) A1: 23. 80473(± 0. 08969) A2: 26. 03424(± 0. 10511) x0: -32. 76767(± 1. 00961) dx: 4. 15624(± 0. 91436) Fracture toughness J integral(KJ/m2) Temperature(o C) -80 -60 -40 -20 0 20.

DOI: 10.1111/j.1747-1567.1996.tb00475.x

Google Scholar

[28] [30] [32] [34] [36] [38] [40] [42] Model: Boltzmann y = A2 + (A1-A2)/(1 + exp(x-x0)/dx) A1: 28. 57703(± 1. 51119) A2: 38. 88737(± 0. 96654) x0: -34. 43068(± 4. 58903) dx: 9. 50417(± 4. 95119) Fracture toughness J integral (KJ/m 2) Temperature( o C) Fig. 5 J versus Temperature (4mm) Fig. 6 J versus Temperature (8mm) -80 -60 -40 -20 0 20.

Google Scholar

[25] [30] [35] [40] [45] [50] [55] Model: Boltzmann y = A2 + (A1-A2)/(1 + exp(x-x0)/dx) A1: 24. 96454(± 2. 45683) A2: 49. 62719(± 2. 25519) x0: -37. 08256(± 3. 25614) dx: 8. 53(± 3. 3152) Fracture toughness J integral (KJ/m2 ) Temperature( o C) -70-60-50-40-30-20-10.

Google Scholar

[20] [30] [40] [50] [60] Model: Boltzmann y = A2 + (A1-A2)/(1 + exp(x-x0)/dx) A1: 22. 83142(± 1. 58537) A2: 54. 32069(± 0. 54431) x0: -55. 85876(± 0. 67396) dx: 3. 69983(± 0. 59356) Fracture toughnes J integral(KJ/m 2) Temperature(o C) Fig. 7 J versus Temperature (12mm) Fig. 8 J versus Temperature (16mm) -70 -60 -50 -40 -30 -20 -10.

Google Scholar

[20] [25] [30] [35] [40] [45] [50] [55] Model: Boltzmann y = A2 + (A1-A2)/(1 + exp(x-x0)/dx) A1: 20. 09944(± 1. 997) A2: 45. 38342(± 0. 963) x0: -56. 6391(± 1. 008) dx: 2. 32058(± 0. 829) Fracture toughness J integral(KJ/m.

Google Scholar

[2] ) Temperature(o C).

Google Scholar

3 6 9 12 15 18 21 24.

Google Scholar

[14] [21] [28] [35] [42] [49] [56] uppershelf lowershelf Fracture toughness J integral(KJ/m2) Thickness(mm) Fig. 9 J versus Temperature (22mm) Fig. 10 J versus thickness original crack tip current crack tip crack propagation path Fig. 11 typical brittle fracture surface.

DOI: 10.1017/cbo9780511623127.005

Google Scholar