On Cold Materials of Pavement and High-Temperature Performance of Asphalt Concrete

Abstract:

Article Preview

With global climate becoming warmer more and more attention is being paid to cold materials. Lower surface temperature contributes to decrease the temperature of the ambient air as heat convection intensity from a cooler surface is lower. Such temperature reductions can have significant impacts on cooling energy consumption in urban areas, a fact of particular importance in hot climate cities. The black surface of asphalt pavement absorbs more heat from the sun, and higher temperature of pavement surface contributes to increase the effect of the urban heat island, but affects the performance and life span of a pavement. Asphalt pavements form an integral part of any transportation system and are typically engineered to last 15 years or more, but many have been failing early due to potholes, cracks, raveling and other problems. Cool pavement are mainly aimed to decrease the effect of asphalt pavement on the urban heat island, but the influence of cold materials on the high-temperature performance of asphalt concrete pavement is paid little attention relatively. In this paper, it’s discussed that the effect of asphalt-pavement high temperature and its improving measures. And the mechanism of cool pavements is introduced, and possible technologies applied to asphalt pavements are reviewed. The idea of asphalt concrete pavement with automatic temperature-control is put forward.

Info:

Periodical:

Materials Science Forum (Volumes 620-622)

Edited by:

Hyungsun Kim, JienFeng Yang, Tohru Sekino and Soo Wohn Lee

Pages:

379-382

DOI:

10.4028/www.scientific.net/MSF.620-622.379

Citation:

M. Z. Chen et al., "On Cold Materials of Pavement and High-Temperature Performance of Asphalt Concrete", Materials Science Forum, Vols. 620-622, pp. 379-382, 2009

Online since:

April 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.