p.747
p.753
p.759
p.765
p.771
p.777
p.783
p.789
p.795
A New Adaptive Genetic Algorithm for Job-Shop Scheduling
Abstract:
In order to minimize makespan for job-shop scheduling problem (JSP), an improved adaptive genetic algorithm (IAGA) based on hormone modulation mechanism is proposed. This algorithm has characteristics with avoiding overcoming premature phenomenon and slow evolution. The proposed IAGA algorithm is applied to dynamic job-shop scheduling problem (DJSP) and the satisfied result is obtained. By employing the proposed IAGA, machines can be used more efficiently, which means that tasks can be allocated appropriately, production efficiency can be improved, and the production cycle can be shortened efficiently. Therefore it embodies good adaptation to the DJSP (rush order, machine malfunction, and so on).
Info:
Periodical:
Pages:
771-776
Citation:
Online since:
August 2009
Authors:
Price:
Сopyright:
© 2009 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: