[1]
Grjotheim, K., Krohn, c., Malinovsky, M., Matiasovsky, K., Thonstad, J. (1982) Aluminium electrolysis: Fundamentals of the Hall-Heroult process, Aluminium Verlag.
Google Scholar
[2]
Rødseth, J., et al. (2002) Solubility of carbon in aluminium and its effect upon the casting process, Light Metals: Proceedings of Sessions, TMS Annual Meeting (Warrendale, Pennsylvania), 883-887.
Google Scholar
[3]
Augood, D.R. (1980) Light Metals, TMS, 413-427.
Google Scholar
[4]
Sparwald, V. (1973) Volatilization of Impurities during Fused Salt Bath Aluminium Electrolysis. Beitrag zur verfluechtigung der begleitelemente bei der aluminiumschmelzflusselektrolyse, 26(11), 529-533.
Google Scholar
[5]
Danek, V. et al. (2004) Material balance of vanadium in aluminium reduction cells. Industrial and Engineering Chemistry Research, 43(26), 8239-8243.
Google Scholar
[6]
Simensen, C.J. (1985) Sampling and analysis of impurities in aluminium, International Seminar on refining and Alloying of Liquid aluminium and Ferro-Alloys, Aluminium Verlag.
Google Scholar
[7]
Taylor, J.A. (1995) Metal related castabilty effects in aluminium foundry alloys. Cast Metals 8(4), 225-252.
DOI: 10.1080/09534962.1996.11819212
Google Scholar
[8]
Vogt, F. et al. (2007) A preview of anode coke quality in 2007, TMS Light Metals, 2004, 489493.
Google Scholar
[9]
Belov, N.A., Eskin, D.G. and Aksenov A.A. (2002) Iron in Aluminium Alloys: Impurity and Alloying Element, Taylor and Francis.
DOI: 10.1201/9781482265019
Google Scholar
[10]
Taylor, J.A. (1997) The role of iron in the formation of porosity in Al-Si-Cu alloy castings, University of Queensland, PhD Thesis.
Google Scholar
[11]
Mbuya, T.O., Odera, B.O. and Ng'ang'a, S.P. (2003) Influence of iron on castability and properties of aluminium silicon alloys: Literature review. International Journal of Cast Metals Research, 16(5), 451-465.
DOI: 10.1080/13640461.2003.11819622
Google Scholar
[12]
Edwards, L. (2007) Responding to changes in coke quality, Australian Smelting Conference, Terrigal, NSW.
Google Scholar
[13]
Mondolfo, L.F. (1976) Aluminium Alloys: Structure and Properties, Butterworths.
Google Scholar
[14]
Hatch, J.E. (1984) Aluminium properties and physical metallurgy, American Society of Metals.
Google Scholar
[15]
Cook, R., Kearns, M.A. and Cooper, P.S. (1997).
Google Scholar
[16]
Mannweiler, U. et al. (1989) High vanadium Venezuelan petroleum coke, a raw material for the aluminium industry?, Light Metals: Proceedings of Sessions, AIME Annual Meeting (Warrendale, Pennsylvania), Metallurgical Soc of AIME, 449-454.
Google Scholar
[17]
Auchet, J. and Terzieff, P. (1997) The effect of Ti, V and Cr impurities on the transport properties of liquid aluminium. Journal of Alloys and Compounds, 261, 295-298.
DOI: 10.1016/s0925-8388(97)00207-7
Google Scholar
[18]
Maitland, A.H.R. (1987) 8th Internationale Leichtmetalltagung, 423-425.
Google Scholar
[19]
Belov, N.A., Eskine, D.G. and Aksenov, A.A. (2005) Multicomponent phase diagrams: applications for commercial aluminium alloys, Elsevier.
Google Scholar
[20]
Edwards, L., Vogt, F. and Wilson, J. (2001) Coke blending at Anglesey aluminium, Light Metals: Proceedings of Sessions, TMS Annual Meeting (Warrendale, Pennsylvania), 689-694.
Google Scholar
[21]
Chaudhuri, P.D. (1996) A Procedure for the Production of Ultra-Pure Precursors from Coal for the Manufacture of Value Added Carbon Products. Fuel Science and Technology International, 14(10), 1433-1446.
DOI: 10.1080/08843759608947649
Google Scholar
[22]
Goodes, C.G., Eady, J. A and Nixon, J.C. (1987) Production of anode grade carbon from coal, Light Metals: Proceedings of Sessions, AIME Annual Meeting (Warrendale, Pennsylvania), Metallurgical Soc of AIME, 459-464.
Google Scholar
[23]
Renganthan, K.Z., Mintz, J.W. Kneisl, E.A. and Stiller, A.H. (1988) Preparations of an Ultra-Low Ash Coal Extract under Mild Conditions. Fuel Processing Technology, 18, 273-279.
DOI: 10.1016/0378-3820(88)90051-3
Google Scholar
[24]
Gala, H.B.S., Kee, K.H. and Hucko, R.E. (1989) An Overview of the Chemistry of the Molten Caustic Leaching Process. Coal Preparation, 7, 1-28.
DOI: 10.1080/07349348908960538
Google Scholar
[25]
de Vries, M. (2008) Biocoke, -sustainable materials for carbon anodes. [cited; Available from: http: /www. csiro. au/news/newsletters/Metals/0803_metals/html/LMFeNews_Biocoke. htm.
Google Scholar
[26]
Mousa, A., de Vries, M., Lovel, R. and Tassios, S. (2007) Aluminium Production in a Carbon Constrained Society: A Way Forward. PACE Petroleum Coke Quarterly, p.31.
Google Scholar
[27]
Queneau, P.B. et al. (1992) Processing of petroleum coke for recovery of vanadium and nickel. Hydrometallurgy, 5(1), 3-24.
Google Scholar
[28]
Jack, T.R., Sullivan, E.A. and Zajic, J.E. (1980) The release of vanadium from Athabasca oil sands coke and coke ash. Fuel, 73 (May), 151-156.
DOI: 10.1016/0016-2361(79)90008-5
Google Scholar
[29]
Jack, T.R., Sullivan, E. A. and Zajic, J. E. (1979) Leaching of vanadium and other metals from Athabasca oil sands coke and coke ash. Fuel, 58(8), 589-594.
DOI: 10.1016/0016-2361(79)90008-5
Google Scholar
[30]
Lehmann, R., et al. (1985) Concepts for heavy metal handling in heavy oil upgrading processes, UNITAR/UNDP Information Cent for Heavy Crude & Tar Sands, 2053-(2077).
Google Scholar
[31]
Schneider, L.G. and George, Z.M. (1981) Recovery of vanadium and nickel from oil sands coke ash, Extraction Metallurgy '81., Inst of Min and Metall, 413-420.
Google Scholar
[32]
Haas, A. (1981) Method for recovering vanadium from petroleum coke, US Patent 4, 243, 639.
Google Scholar
[33]
McCorriston, L.L. (1983) Process using sulphate reagent for recovering vanadium from cokes derived from heavy oils, US Patent 4, 389, 378.
Google Scholar
[34]
McCorriston, L.L. (1985) Process using carbonate reagent for recovering vanadium from cokes and ashes derived from heavy oils, US Patent 4, 536, 374.
Google Scholar
[35]
Thornhill, D.H. (1992) Process and apparatus for recovering heavy metal from carbonaceous material, US Patent 5, 277, 795.
Google Scholar
[36]
Schemel, R. (1984) Method for leaching and recovering vanadium from vanadium bearing byproduct materials, US Patent 4, 539, 186.
Google Scholar
[37]
Malone, D.P. and Holcombe, T.C. (1981) Recovering vanadium from petroleum coke as dust, US Patent 6, 241, 806.
Google Scholar
[38]
Davila Armas, C.E. and Monhemius, A.J. (1987) Recovery of vanadium and nickel from petroleum coke by chloride volatilization, Pyrometallurgy, The Institute of Mining and Metallurgy.
Google Scholar
[39]
Belov, N.A. and Zolotorevskiy, V.S. (2002) The effect of nickel on the structure, mechanical and casting properties of aluminium alloy of 7075 type, Materials Science Forum, 935-940.
DOI: 10.4028/www.scientific.net/msf.396-402.935
Google Scholar
[40]
Escobar, A.S., et al. (2006) Role of nickel and vanadium over USY and RE-USY coke formation. Applied Catalysis A: General, 315, 68-73.
DOI: 10.1016/j.apcata.2006.09.004
Google Scholar
[41]
Wallenstein, D., Kanz, B. and Haas, A. (2000) Influence of coke deactivation and vanadium and nickel contamination on the performance of low ZSM-5 levels in FCC catalysts. Applied Catalysis A: General, 192(1), 105-123.
DOI: 10.1016/s0926-860x(99)00334-8
Google Scholar
[42]
Leinum, T. and Rasch, B. (2001) Crucible fluxing of potroom metal in a Norsk hydro cast shop effect on dross reduction and increased metal recovery, Light Metals: Proceedings of Sessions, TMS Annual Meeting (Warrendale, Pennsylvania), 1049-1052.
Google Scholar
[43]
Dube, G. (1984) Removal of alkali metals and alkaline earth metals from molten aluminium, US Patent 4, 470, 846.
Google Scholar
[44]
Karabay, S. and Uzman,I. (2005).
Google Scholar
[45]
Gao, J.W., et al. (2007) Effects of Na2B4O7 on the elimination of iron from aluminium melt. Scripta Materialia, 57(3), 197-200.
DOI: 10.1016/j.scriptamat.2007.04.009
Google Scholar