[1]
Neff, D.V. (2004) Evaluating Molten Metal Cleanliness for Producing High Integrity Aluminum Die Castings, in Die Casting Engineer, 2-6.
Google Scholar
[2]
Rasmussen, W.M. (1996) Aluminum Melt's Cleanliness, in Modern Casting, 45-48.
Google Scholar
[3]
Ihara, I., Aso, H. and Burhan, D. (2004) In-situ observation of alumina particles in molten aluminum using a focused ultrasonic sensor. JSME International Journal, Series A: Solid Mechanics and Material Engineering, 47(3), 280-286.
DOI: 10.1299/jsmea.47.280
Google Scholar
[4]
Makarov, S., Apelian, D. and Ludwig, R. (1999) Inclusion Removal and Detection in Molten Aluminum: Mechanical, Electromagnetic and Acoustic Techniques (99-150). TRANSACTIONS-AMERICAN FOUNDRYMENS SOCIETY, 727-736.
Google Scholar
[5]
Simensen, C.J. and Berg, G. (1980) A survey of inclusions in aluminum. Aluminium (Isernhagen, Germany), 56(5), 335-40.
Google Scholar
[6]
Keles, O. and Dundar, M. (2007) Aluminum foil: Its typical quality problems and their causes. Journal of Materials Processing Technology, 186(1-3), 125-137.
DOI: 10.1016/j.jmatprotec.2006.12.027
Google Scholar
[7]
Guthrie, R.I.L. and Li, M. (2001).
Google Scholar
[8]
Doutre, D., et al. (1985) Aluminum cleanliness monitoring: methods and applications in process development and quality control. Light Metals (Warrendale, PA, United States), 1179-95.
Google Scholar
[9]
Tian, C., et al. (2002) Effect of melt cleanliness on the formation of porosity defects in automotive aluminium high pressure die castings. Journal of Materials Processing Technology, 122(1), 82-93.
DOI: 10.1016/s0924-0136(01)01229-8
Google Scholar
[10]
Makarov, S., Ludwig, R. and Apelian, D. (1999) Electromagnetic visualization technique for non-metallic inclusions in a melt. Measurement Science and Technology, 10(11), 1047-1053.
DOI: 10.1088/0957-0233/10/11/312
Google Scholar
[11]
Ono, Y., Moisan, J.F. and Jen, C.K. (2003) Ultrasonic Techniques for Imaging and Measurements in Molten Aluminum. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50(12), 1711-1721.
DOI: 10.1109/tuffc.2003.1256312
Google Scholar
[12]
Enright, P.G. and Hughes, I.R. (1995) A new shop floor technique for quantitative measurement of molten cleanliness. Proceedings of the International Conference on Molten Aluminum Processing, 4th, Orlando, Fla., Nov. 12-14, 1995, p.431.
Google Scholar
[13]
Simard, A.A. et al. (2000).
Google Scholar
[14]
Rinderer, B., Danilova, N. and Couper, M. (2005) A comparison of LAIS and PoDFA analysis of metal cleanliness. in Proceedings of the Australasian Conference and Exhibition - Aluminium Cast House Technology, Melbourne.
Google Scholar
[15]
Dion, S. (2004) Device and method for measuring metal inclusions (Alcan International Limited, Can. ), WO, 20 pp.
Google Scholar
[16]
Jen, C.K., Legoux, J.G. and Parent, L. (2000) Experimental evaluation of clad metallic buffer rods for high temperature ultrasonic measurements. NDT and E International, 33(3), 145-153.
DOI: 10.1016/s0963-8695(99)00042-0
Google Scholar
[17]
Ihara, I., et al. (2002) Ultrasonic in-line sensors for inclusion detection in liquid metals. in Proceedings of the IEEE Ultrasonics Symposium, Munich, Germany.
DOI: 10.1109/ultsym.2002.1193521
Google Scholar
[18]
Aubrey, L.S., Smith, D.D. and Martins, L.C.B. (2001) New product developments for aluminum cast houses. in Proceedings of the Australian Asian Pacific Conference on Aluminium Cast House Technology.
DOI: 10.1002/9781118806364.ch4
Google Scholar
[19]
Ono, Y., et al. (2004) An On-Line Ultrasonic Cleanliness Analyzer for Molten Light Metals. JOM, 56(2), 59-64.
DOI: 10.1007/s11837-004-0148-9
Google Scholar
[20]
Ono, Y., et al. (2002) Development of ultrasonic techniques with buffer rod in molten aluminum. in Proceedings of the IEEE Ultrasonics Symposium, Munich, Germany.
DOI: 10.1109/ultsym.2002.1193520
Google Scholar
[21]
Ihara, I., Jen, C.K. and Franca, D.R. (2000) Ultrasonic imaging, particle detection, and V(z) measurements in molten zinc using focused clad buffer rods. Review of Scientific Instruments, 71(9), 3579-3586.
DOI: 10.1063/1.1287041
Google Scholar
[22]
Falk, H. and Wintjens, P. (1998) Statistical evaluation of single sparks. Spectrochimica Acta - Part B Atomic Spectroscopy, 53(1), 49-62.
DOI: 10.1016/s0584-8547(97)00128-6
Google Scholar
[23]
Kuss, H. -M., et al. (2002) Comparison of spark OES methods for analysis of inclusions in iron base matters. Analytical and Bioanalytical Chemistry, 374(7-8), 1242-1249.
DOI: 10.1007/s00216-002-1595-1
Google Scholar
[24]
Mohamed, W.T.Y. (2008) Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera. Optics and Laser Technology, 40(1), 30-38.
DOI: 10.1016/j.optlastec.2007.04.004
Google Scholar
[25]
Nieuwenhuis, J.H., et al. (2004) Integrated Coulter counter based on 2-dimensional liquid aperture control. Sensors and Actuators, B: Chemical, 102(1), 44-50.
DOI: 10.1016/j.snb.2003.10.017
Google Scholar
[26]
Martin, J. -P., Hachey, R. and Painchaud, F. (1994) Online metal cleanliness determination in molten aluminum alloys using the LiMCA II analyzer. Light Metals (Warrendale, PA, United States), pp.915-20.
Google Scholar
[27]
Mei, L.I. and Guthrie, R.I.L. (2000).
Google Scholar
[28]
Simard, A., et al. (2001).
Google Scholar
[29]
Li, M. and Guthrie, R.I.L. (2003) Molten Metal Inclusion Sensor Probes, Limca Research: United States.
Google Scholar
[30]
Pedneau, N. and Pekguleryuz, M.O. (1997) Equiaxed-grain size analysis in the mushy zone during solidification via an in-situ method based on the electrical sensing zone principle. Scripta Materialia, 37(7), 903-909.
DOI: 10.1016/s1359-6462(97)00206-6
Google Scholar
[31]
ABB (2007) The ABB Group - Automation and Power Technologies. [Webpage] [cited 31 Nov 2007]; ABB Group]. Available from: www. abb. com.
Google Scholar
[32]
ABB (2007) Analyze IT - LiMCA II Liquid Metal Cleanliness Analyzer. Retrieved (2007).
Google Scholar
[33]
Ludwig, R., Apelian, D. and Makarov, S. (2002) Systems for detecting measuring inclusions, United States. p.19.
Google Scholar
[34]
Lemdiasov, R.A. and Ludwig, R. (2004) Mathematical Design of an Electromagnetic Separation Sensor in Molten Aluminum. IEEE Transactions on Magnetics, 40(1 I), 37-42.
DOI: 10.1109/tmag.2003.821120
Google Scholar
[35]
Makarov, S., Ludwig, R. and Apelian, D. (2000) Identification of depth and size of subsurface defects by a multiple-voltage probe sensor: Analytical and neural network techniques. Journal of Nondestructive Evaluation, 19(2), 67-80.
DOI: 10.1063/1.1306114
Google Scholar
[36]
Brown, B.H. (2003) Electrical impedance tomography (EIT): A review. Journal of Medical Engineering and Technology, 27(3), 97-108.
Google Scholar
[37]
Schuessler, T.F. and Bates, J.H.T. (1998) Current patterns and electrode types for singlesource electrical impedance tomography of the thorax. Annals of Biomedical Engineering, 26(2), 253-259.
DOI: 10.1114/1.116
Google Scholar
[38]
Dickin, F. and Wang, M. (1996) Electrical resistance tomography for process applications. Measurement Science and Technology, 7(3), 247-260.
Google Scholar
[39]
Jordana, J., Gasulla, M. and Pallas-Areny, R. (2001) Electrical resistance tomography to detect leaks from buried pipes. Measurement Science and Technology, 12(8), 1061-1068.
DOI: 10.1088/0957-0233/12/8/311
Google Scholar
[40]
Yi, M.J., et al. (2001) Three-dimensional imaging of subsurface structures using resistivity data. Geophysical Prospecting, 49(4), 483-497.
DOI: 10.1046/j.1365-2478.2001.00269.x
Google Scholar