An Analysis of Strength and Ductility of Ultrafine Grained Al Alloys

Article Preview

Abstract:

This paper brings together and compares data of various ultrafine grained (UFG) Al alloys processed through different routes. In general, the trend of decreasing ductility with increasing strength was observed for the UFG alloys. As compared to the coarse grained (CG) alloys, the UFG alloys show a lower ductility, a lower extent of work-hardening and a lower uniform elongation. Unlike the CG alloys, which show a large fraction of uniform to total elongation, in UFG alloys this fraction varies with processing technique. It is shown here that aging of some UFG Al alloys improves ductility. Further, it is shown that increasing the equivalent strain of pre-deformation increases ductility. From this it was inferred that high angle grain boundaries have an important influence on ductility. The variation of ductility with strain rate sensitivity has been found to match both the analytical prediction as well as data of various materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

165-177

Citation:

Online since:

November 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islam Galiev, I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[2] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater. Vol. 47, (1999), p.579.

Google Scholar

[3] R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R: Reports, Vol. 50, (2005), p.1.

Google Scholar

[4] D. Witkin, B.Q. Han and E.J. Lavernia: Metal. Mater. Trans. Vol. 37A (2006), p.185.

Google Scholar

[5] K.M. Youssef, R.O. Scattergood, K.L. Murty and C.C. Koch: Scripta Mater. Vol. 54 (2006), p.251.

Google Scholar

[6] X.L. Shi, R.S. Mishra and T.J. Watson: Scripta Mater. Vol. 52 (2005), p.887.

Google Scholar

[7] Y. Wang, X.L. Shi, R.S. Mishra and T.J. Watson: Scripta Mater. Vol. 56 (2007), p.923.

Google Scholar

[8] Y. Wang, X.L. Shi, R.S. Mishra and T.J. Watson: Scripta Mater. Vol. 56 (2007), p.971.

Google Scholar

[9] X.L. Shi, R.S. Mishra and T.J. Watson: Mater. Sci. Eng. A Vol. 494 (2008), p.247.

Google Scholar

[10] E.W. Hart: Acta Met. Vol. 15 (1967), p.351.

Google Scholar

[11] Y. Wang, M.W. Chen, F. Zhou and E. Ma: Nature Vol. 419 (2002), p.912.

Google Scholar

[12] E. Ma: J. Mater. Eng. Performance Vol. 14 (2005), p.430.

Google Scholar

[13] Y. Wang, E. Ma and M.W. Chen: Appl. Phys. Lett. Vol. 80 (2002), p.2395.

Google Scholar

[14] P.S. De, R.S. Mishra and C.B. Smith: Scripta Mater. Vol. 60 (2009), p.500.

Google Scholar

[15] I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina and P.D. Hodgson: Scripta Mater. Vol. 58 (2008), p.163.

DOI: 10.1016/j.scriptamat.2007.09.057

Google Scholar

[16] J. May, H. W. Höppel and M. Göken: Mater. Sci. Forum Vol. 503-504 (2006), p.781.

Google Scholar

[17] Z. Horita, K. Ohashi, T. Fujita, K. Kaneko and T.G. Langdon: Adv. Mater. Vol. 17 (2005) p.1599.

Google Scholar

[18] M.V. Markushev, M. Yu. Murashkin: Mater. Sci. Eng. A Vol. 367 (2004), p.234.

Google Scholar

[19] P.L. Sun, C.Y. Yu, P.W. Kao and C.P. Chang: Scripta Mater. Vol. 52 (2005), p.265.

Google Scholar

[20] P.L. Sun, E.K. Cerreta, G.T. Gray III and P. Rae: Mater. Sci. Eng. A Vol. 410-411 (2005), p.265.

Google Scholar

[21] H. Miyamoto, K. Ota and T. Mimaki: Scripta Mater. Vol. 54 (2006) p.1721.

Google Scholar

[22] Z. Horita, T. Fujinami, M. Nemoto and T.G. Langdon: Metal. Mater. Trans. Vol. 31A (2000), p.691.

Google Scholar

[23] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Metal. Mater. Trans. Vol. 29A (1998), p.2503.

Google Scholar

[24] W.J. Kim, J.K. Kim, T.Y. Park, S.I. Hong, D.I. Kim, Y.S. Kim, and J.D. Lee: Metal. Mater. Trans. Vol. 33A (2002), p.3115.

Google Scholar

[25] N. Tsuji, Y. Ito, Y. Saito and Y. Minamino: Scripta Mater. Vol. 47 (2002), p.893.

Google Scholar

[26] H.W. Kim, S.B. Kang, N. Tsuji and Y. Minamino: Mater. Sci. Forum Vol. 512 (2006), p.85.

Google Scholar

[27] R. Valiev: Mater. Sci. Forum Vol. 584-586 (2008), p.22.

Google Scholar

[28] B.Q. Han, Z. Lee, S.R. Nutt, E.J. Lavernia, and F.A. Mohamed: Metal. Mater. Trans. Vol. 34A (2003), p.603.

Google Scholar

[29] Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma and Y.T. Zhu: Adv. Mater. Vol. 18 (2006), p.2280.

Google Scholar

[30] S. Cheng, Y.H. Zhao, Y.T. Zhu and E. Ma: Acta Mater. Vol. 55 (2007), p.5822.

Google Scholar

[31] T.C. Hsu, G.S. LittleJohn and B.M. Marchbank: in ASTM Proceedings Vol. 65 (1965), p.874.

Google Scholar

[32] G.E. Dieter: Mechanical Metallurgy. 3rd ed., Mc Graw-Hill Book Co., New York (1986).

Google Scholar

[33] Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou and E.J. Lavernia: Scripta Mater. Vol. 59 (2008), p.627.

DOI: 10.1016/j.scriptamat.2008.05.031

Google Scholar

[34] Y.M. Wang and E. Ma: Appl. Phys. Lett. Vol. 83 (2003), p.3165.

Google Scholar

[35] R.W. Hayes, D. Witkin, F. Zhou and E.J. Lavernia: Acta Mater. Vol. 52 (2004), p.4259.

Google Scholar

[36] J. May, H.W. Höppel and M. Göken: Scritpa Mater. Vol. 53 (2005), p.189.

Google Scholar

[37] R Kapoor and J.K. Chakravartty: Acta Mater. Vol. 55 (2007), p.5408.

Google Scholar

[38] R. Kapoor, C. Gupta, G. Sharma and J.K. Chakravartty: Scripta Mater. Vol. 53 (2005) p.1389.

Google Scholar

[39] I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina and P.D. Hodgson: Acta Mater. Vol. 56 (2008) p.2223.

Google Scholar

[40] U.F. Kocks, J.J. Jonas and H. Mecking: Acta Met. Vol. 27 (1979), p.419.

Google Scholar

[41] I.H. Lin, J.P. Hirth and E.W. Hart: Acta Met. Vol. 29 (1981), p.819.

Google Scholar

[42] D.A. Woodford: Trans. Am. Soc. Metals Vol. 62 (1969), p.291.

Google Scholar

[43] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu and T.C. Love: J. Mater. Res. Vol. 17 (2002), p.5. Corrected Paper 14. 12. 09.

Google Scholar