Processing, Strength and Ductility of Bulk Nanostructured Metals Produced by Sever Plastic Deformation: An Overview

Article Preview

Abstract:

Nanostructured metals which have nano-scale microstructure are classified into ultrafine grained metals and nanocrystalline metals. In recent years, many processing techniques have been developed for producing nanostructured metals. Nanostructured metals possess ultrahigh strength but the low ductility is an important limitation on development of these materials for structural applications. This paper overviews various methods of producing nanostructured metals and recent investigations of strength and ductility of nanostructured metals processed by sever plastic deformation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

131-150

Citation:

Online since:

November 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.T. Zhu, T.G. Langdon: JOM, Vol. 56 (2004), p.58.

Google Scholar

[2] C.C. Koch: &anostructured Materials Processing, Properties and Potential Applications, 1st edition, Noyes/William Andrew, Norwich, New York, U.S.A. (2002).

Google Scholar

[3] C. Suryanarayana, C.C. Koch: Hyperfine Interact., Vol. 130 (2000), p.5.

Google Scholar

[4] M.A. Meyers, A. Mishra, D.J. Benson: Prog. Mater. Sci., Vol. 51 (2006), p.427.

Google Scholar

[5] E. Ma: JOM, Vol. 58 (2006), p.49.

Google Scholar

[6] Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, T.G. Langdon: Appl. Phys. Lett., Vol. 89 (2006), p.121906.

Google Scholar

[7] Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, E.J. Lavernia: Appl. Phys. Lett., Vol. 92 (2008), p.081903.

DOI: 10.1063/1.2870014

Google Scholar

[8] L.L. Shaw: JOM, Vol. 52 (2000), p.41.

Google Scholar

[9] C.C. Koch: J. Mater. Sci., Vol. 42 (2007), p.1403.

Google Scholar

[10] C.C. Koch: Rev. Adv. Mater. Sci., Vol. 5 (2003), p.91.

Google Scholar

[11] C. Suryanarayana: Int. Mater. Rev., Vol. 40 (1995), p.41.

Google Scholar

[12] F.H. Froes, O.N. Senkov, E.G. Baburaj: Mater. Sci. Eng. A, Vol. 301 (2001), p.44.

Google Scholar

[13] G.M. Nieman, J.R. Weertman, R.W. Siegel: Scri. Metall., Vol. 23 (1989), p. (2013).

Google Scholar

[14] T.R. Malow, C.C. Koch : Acta Mater., Vol. 46 (1998), p.6459.

Google Scholar

[15] J.E. Carsley, A. Fisher, W. W Milligan, E.C. Aifantis: Metall. Mater. Trans. A, Vol. 29 (1998), p.2261.

Google Scholar

[16] A. Mashreghi, M.M. Moshksar: Int. J. Mod. phys. B, Vol. 22 (2008), p.2896.

Google Scholar

[17] M.M. Moshksar, M. Mirzaee: Intermetallics, Vol. 12 (2004), p.1361.

Google Scholar

[18] M.M. Moshksar and S.M. Zebarjad: Iran. J. Sci. Technol., Transaction B: Technology, Vol. 23 (1999), p.248.

Google Scholar

[19] C.C. Koch: Nanostructured Materials, Vol. 9 (1997), p.13.

Google Scholar

[20] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu: JOM., Vol. 58 (2006), p.33.

Google Scholar

[21] S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, K. Hono: Acta Mater., Vol. 55 (2007), p.2885.

Google Scholar

[22] R.Z. Valiev, T.C. Lowe, A.K. Mukherjee: JOM, Vol. 52 (2000), p.37.

Google Scholar

[23] V.M. Segal, V.I. Reznikov, A.E. Drobyshevski, V.I. Kopylov: Russ. Metall., Vol. 1 (1981), p.99.

Google Scholar

[24] R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev: Mater. Sci. Eng. A, Vol. 137 (1991), p.35.

Google Scholar

[25] R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov: Mater. Sci. Eng. A, Vol. 168 (1993), p.141.

Google Scholar

[26] M. Reihanian, R. Ebrahimi, N. Tsuji, M.M. Moshksar: Mater. Sci. Eng. A, Vol. 473 (2008), p.189.

Google Scholar

[27] V.M. Segal: Mater. Sci. Eng. A, Vol. 197 (1995), p.157.

Google Scholar

[28] B. Cherukuri, T.S. Nedkova, R. Srinivasan: Mater. Sci. Eng. A, Vol. 410-411 (2005), p.394.

Google Scholar

[29] H.W. Zhang, N. Hansen: J. Mater. Sci., Vol. 42 (2007), p.1682.

Google Scholar

[30] N. Tsuji, Y. Saito, H. Utsunomiya, S. Tanigawa: Scr. Mater., Vol. 40 (1999), p.795.

Google Scholar

[31] Y. Saito, N. Tsuji, H. Utsunomiay, T. Sakai, R.H. Hong: Scr. Mater., Vol. 39 (1998), p.1221.

Google Scholar

[32] H. Danesh Manesh, H. Sh. Shahabi, J. Alloy. Compd. (2008), Article in press.

Google Scholar

[33] M. Eizadju, H. Danesh Manesh, K. Janghorban: Mater. Design, Vol. 29 (2008), p.909.

Google Scholar

[34] M. Eizadjou, A. Kazemi Talachi, H. Danesh Manesh, H. Shakur Shahabi, K. Janghorban: Compos. Sci. Technol., Vol 68 (2008), p. (2003).

Google Scholar

[35] L. Ghalandari, M.M. moshksar: A paper on accumulative roll bonding is going to be submitted.

Google Scholar

[36] D.H. Shin, J.J. Park, Y.S. Kim, K.T. Park: Mater. Sci. Eng. A, Vol. 328 (2002), p.98.

Google Scholar

[37] J.W. Lee, J.J. Park: J. Mater. Process. Tech., Vol. 130-131 (2002), p.208.

Google Scholar

[38] A. Shirdel, A. Khajeh, M.M. Moshksar: a paper on groove pressing is going to be submitted.

Google Scholar

[39] M. Ahmadi Moqaddam, M.M. Moshksar: a paper on cyclic extrusion and compression is going to be submitted.

Google Scholar

[40] Y.T. Zhu, H. Jiang, J. Huang, T.C. Lowe: Metall. Mater. Trans. A, Vol. 32 (2001), p.1559.

Google Scholar

[41] Y.T. Zhu, T.C. Lowe, H. Jiang, J. Huang, U.S. Patent 6, 197, 129. (2001).

Google Scholar

[42] J.Y. Huang, Y.T. Zhu, H. Jiang, T.C. Lowe: Acta mater., Vol. 49 (2001), p.1497.

Google Scholar

[43] J. Huang, Y.T. Zhu, D.J. Alexander, X. Liao, T.C. Lowe, R.J. Asaro: Mater. Sci. Eng. A, Vol. 371 (2004), p.35.

Google Scholar

[44] L.S. Tóth, M. Arzaghi, J.J. Fundenberger, B. Beausir,O. Bouaziz, R. Arruffat-Massion: Scripta Mater., Vol. 60 (2009), p.175.

Google Scholar

[45] Q.D. Wang, Y.J. Chen, J.B. Lin, L.J. Zhang, C.Q. Zhai: Mater. Lett., Vol. 61 (2007), p.4599.

Google Scholar

[46] Y. Estrin, H.S. Kim, F.R.N. Nabarro: Acta Mater., Vol. 55 (2007), p.6401.

Google Scholar

[47] N. Hansen, X. Huang, G. Winther: Mater. Sci. Eng. A, Vol. 494 (2008), p.61.

Google Scholar

[48] N. Hansen: Scripta Mater., Vol. 51 (2004), p.801.

Google Scholar

[49] M. Reihanian, R. Ebrahimi, M.M. Moshksar, D. Terada, N. Tsujib: Mater. Charact., Vol. 59 (2008), p.1312.

Google Scholar

[50] R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Matlock: Mater. Sci. Eng. A, Vol. 441 (2006), p.1.

Google Scholar

[51] M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, E. Ma: Acta mater., Vol. 55 (2007), p.4041.

Google Scholar

[52] J. Lian, B. Baudelet, A.A. Nazarov: Mater. Sci. Eng. A, Vol. 172 (1993), P. 23.

Google Scholar

[53] J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edition, John Wiley & Sons, New York (1982).

Google Scholar

[54] D. Kuhlmann-Wilsdorf: Mater. Sci. Eng. A, Vol. 113 (1989), p.1.

Google Scholar

[55] N. Hansen, X. Huang, D.A. Hughes: Mater. Sci. Eng. A, Vol. 317 (2001), p.3.

Google Scholar

[56] R. Kapoor, J.K. Chakravartty: Acta Mater., Vol. 55 (2007), p.5408.

Google Scholar

[57] N. Hansen: Metall. Mater. Trans. A, Vol. 32 (2001), p.2917.

Google Scholar

[58] L. Kommel, I. Hussainova, O. Volobueva: Mater. Design, Vol. 28 (2007), p.2121.

Google Scholar

[59] I. Alexandrov, R. Chembarisova, V. Sitdikov, V. Kazyhanov: Mater. Sci. Eng. A, Vol. 493 (2008), p.170.

Google Scholar

[60] S.G. Chowdhury, A. Mondal, J. Gubicza, G. Krállics, Á. Fodor: Mater. Sci. Eng. A, Vol. 490 (2008), p.335.

Google Scholar

[61] D.A. Hughes, N. Hansen: Acta Mater., Vol. 48 (2000), p.2985.

Google Scholar

[62] Q. Liu, X. Huang, D.J. Lloyd, N. Hansen: Acta Mater., Vol. 50 (2002), p.3789.

Google Scholar

[63] R. Ueji, X. Huang, N. Hansen, N. Tsuji, Y. Minamino: Mater. Sci. Forum., Vol. 426-432 (2003), p.405.

Google Scholar

[64] N. Hansen, X. Huang, R. Ueji, N. Tsuji: Mater. Sci. Eng. A, Vol. 387-389 (2004), p.191.

Google Scholar

[65] N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Y. Minamino: Mater. Sci. Forum, Vol. 512 (2006), p.91.

Google Scholar

[66] J.R. Bowen, P.B. Prangnell, D.J. Jensen, N. Hansen: Mater. Sci. Eng. A, Vol. 387-389 (2004), p.235.

Google Scholar

[67] Y.W. Tham, M.W. Fu, H.H. Hng, M.S. Yong, K.B. Lim: J. Mater. Process. Tech., Vol. 192- 193 (2007), p.121.

Google Scholar

[68] I. Balasundar, M. Sudhakara Rao, T. Raghu: Mater. Design, Vol. 30 (2009), p.1050.

Google Scholar

[69] H.S. Kim, Y. Estrin: Mater. Sci. Eng. A, Vol. 410-411 (2005), p.285.

Google Scholar

[70] W.J. Kim, J.C. Namgung, J.K. Kim: Scr. Mater., Vol. 53 (2005), p.293.

Google Scholar

[71] M. Reihanian, R. Ebrahimi, M.M. Moshksar: Materials and Design, Vol. 30 (2009), p.28.

Google Scholar

[72] M.H. Paydar, M. Reihanian, R. Ebrahimi, T.A. Dean, M.M. Moshksar: J. Mater. Proc. Tech., Vol. 198 (2008), p.48.

Google Scholar

[73] S. Wang, W. Liang, Y. Wang, L. Bian, K. Chen: J. Mater. Process. Tech., Vol. 209 ( 2 0 0 9 ), p.3182.

Google Scholar

[74] B.L. Li, N. Tsuji, N. Kamikawa: Mater. Sci. Eng. A, Vol. 423 (2006), p.331.

Google Scholar

[75] D.A. Hughes: Mater. Sci. Eng. A, Vol. 319-321 (2001), p.46.

Google Scholar

[76] E. Ma: J. Mater. Eng. Perform. , Vol. 14 (2005), p.430.

Google Scholar

[77] S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, K. Han: Acta Mater., Vol. 53 (2005), p.1521.

DOI: 10.1016/j.actamat.2004.12.005

Google Scholar

[78] Y.H. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y.T. Zhu, Y. Zhou, E.J. Lavernia: Adv. Mater., Vol. 20 (2008), p.3028.

DOI: 10.1002/adma.200800214

Google Scholar

[79] M. Kawasaki, R.B. Figueiredo, C. Xu, T.G. Langdon: Metall. Mater. Trans. A, Vol. 38 (2007), p.1891.

Google Scholar

[80] Z. Horita, T. Fujinami, M. Nemoto, T.G. Langdon: Metall. Mater. Trans. A, Vol. 31 (2000), p.691.

Google Scholar

[81] R.Z. Valiev, I.V. Alexandrov, T.C. Lowe, Y.T. Zhu: J. Mater. Res., Vol. 17 (2002), p.5.

Google Scholar

[82] Z. Horita, K. Ohashi, T. Fujita, K. Kaneko, T.G. Langdon: Adv. Mater., Vol. 17 (2005), p.1599.

Google Scholar

[83] Y. Wang, M. Chen, F. Zhao, E. Ma: Nature, Vol. 419 (2002), p.912.

Google Scholar

[84] Y.T. Zhu, X.Z. Liao: Nat. Mater., Vol. 3 (2004), p.351.

Google Scholar

[85] D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, R.Z. Valiev: Appl. Phys. Lett., Vol. 79 (2001), p.611.

Google Scholar

[86] Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S.V. Petegem, B. Schmitt: Science, Vol. 304 (2004), p.273.

DOI: 10.1126/science.1095071

Google Scholar

[87] W. Lojkowski: Acta Metall. Mater., Vol. 39 (1991), p.1891.

Google Scholar

[88] C.C. Koch: Scripta Mate., Vol. 49 (2003), p.657.

Google Scholar

[89] Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, Y.T. Zhu: Mater. Sci. Eng. A, Vol. 493 (2008), p.123.

Google Scholar

[90] X. Wu, Y.T. Zhu, E. Ma: Appl. Phys. Lett., Vol 88 (2006), p.121905.

Google Scholar

[91] X.Z. Liao, Y.H. Zhao, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov: J. Appl. Phys., Vol. 96 (2004), p.636.

Google Scholar

[92] Z.W. Wang, Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, Y.T. Zhu, Z. Horitad, T.G. Langdone: Scripta Mater., Vol. 60 (2009), p.52.

Google Scholar

[93] Y.H. Zhao, X.Z. Liao, Y.T. Zhu, Z. Horita, T.G. Langdon: Mater. Sci. Eng. A, Vol. 410-411 (2005), p.188.

Google Scholar

[94] Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, T.G. Langdon: Mater. Sci. Eng. A, Vol. 463 (2007), p.22.

Google Scholar

[95] Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu: Adv. Mater., Vol. 18 (2006), p.2280.

Google Scholar

[96] S. Cheng, Y.H. Zhao, Y.T. Zhu, E. Ma: Acta Mater., Vol. 55 (2007), p.5822.

Google Scholar

[97] Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou, E.J. Lavernia: Scripta Mater., Vol. 59 (2008), p.627.

DOI: 10.1016/j.scriptamat.2008.05.031

Google Scholar

[98] I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, P.D. Hodgson: Acta Mater., Vol. 56 (2008), p.2223.

Google Scholar