A Simulation of the Abnormal Grain Growth in a Nano-Structural AZ31 Mg Alloy by Phase Field Model

Article Preview

Abstract:

Abnormal grain growth was simulated by phase field model in order to find ways of producing scattered a few enormous grains in a nano-structural single phase AZ31 alloy to improve its ductility. It is shown that the abnormal grain growth is controlled by the three keys factors of interface energy, strain restored energy and interface mobility. Therefore, the microstructure with scattered a few enormous grains in the nano-structural matrix can be achieved after an annealing treatment if there is a small group of specially orientated nano-size grains in the original nao-structure with local low grain boundary energy or local high strain energy or local high interface mobility. The morphology of abnormal grains is also examined as function of annealing time to optimize the microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Pages:

697-705

Citation:

Online since:

November 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Lu, J. Lu: Mater. Sci. Eng. Vol. A375-377(2004), p.38.

Google Scholar

[2] M. A. Meyers, A. Mishra, D.J. Benson: Progress in Mater. Sci. Vol. 51(2006), p.427.

Google Scholar

[3] R.A. Andrievski: Mater. Sci. Forum Vol. 282~283(1998), p.10.

Google Scholar

[4] B.Y. Zong, F. Zhang, G. Wang and L. Zuo: J. Mater. Sci. Vol. 42(2007), p.4215.

Google Scholar

[5] N. Xu and B.Y. Zong: Comput. Mater. Sci. Vol. 43(2008), p.1094.

Google Scholar

[6] G. J. Fan, H. Choo, P. K. Liaw, E. J. Lavernia: Acta Mater. Vol. 54(2006), p.1759.

Google Scholar

[7] O. Arnould, O. Hubert, F. Hild: Mater. Sci. Forum Vol. 467-470(2004), p.957.

Google Scholar

[8] P. R. Rios, M. E. Glicksman: Acta Mater. Vol. 15(2006), p.5313.

Google Scholar

[9] N-M Hwang: Mater. Sci. Forum Vol. 467-470(2004), p.745.

Google Scholar

[10] K. -J. Ko, Pil-Ryung Cha, D. Srolovitz, N. -M. Hwang: Acta Mater. Vol. 57(2009), p.838.

Google Scholar

[11] J. Z. Zhu, Z. K. Liu, V. Vaithyanathan, L.Q. Chen, Scripta Mater. Vol. 46(2002), p.401.

Google Scholar

[12] M. T. Wang, B.Y. Zong, G. Wang: J. Mater. Sci. Technol. Vol. 24(2008), p.830.

Google Scholar

[13] M. T. Wang, B.Y. Zong, G. Wang: Comput. Mater. Sci. Vol. 45 (2009), p.217.

Google Scholar

[14] Y. H. Wen, B. Wang, J. P. Simmons, Y. Wang: Acta Mater. Vol. 54(2006), p. (2087).

Google Scholar

[15] K. Lücke, K. Deter: Acta Metall. Vol. 5(1957), p.628.

Google Scholar

[16] C. W. Su, L. Lu, M. O. Lai: Mater. Sci. Eng. Vol. A434(2006), p.227.

Google Scholar

[17] C. E. Krill III, L. Q. Chen: Acta Mater. Vol. 50(2002), p.3057.

Google Scholar

[18] K. Lu, F. Zhou: Acta Metallurgica Sinica Vol. 33(1997), p.100.

Google Scholar