Recent Developments in Ni-Mn-Ga Foam Research

Article Preview

Abstract:

Grain boundaries hinder twin boundary motion in magnetic shape-memory alloys and suppress magnetic-field-induced deformation in randomly textured polycrystalline material. The quest for high-quality single crystals and the associated costs are a major barrier for the commercialization of magnetic shape-memory alloys. Adding porosity to polycrystalline magnetic-shape memory alloys presents solutions for (i) the elimination of grain boundaries via the separation of neighboring grains by pores, and (ii) the reduction of production cost via replacing the directional solidification crystal growth process by conventional casting. Ni-Mn-Ga foams were produced with varying pore architecture and pore fractions. Thermo-magnetic training procedures were applied to improve magnetic-field-induced strain. The cyclic strain was measured in-situ while the sample was heated and cooled through the martensitic transformation. The magnetic field-induced strain amounts to several percent in the martensite phase, decreases continuously during the transformation upon heating, and vanishes in the austenite phase. Upon cooling, cyclic strain appears below the martensite start temperature and reaches a value larger than the initial strain in the martensite phase, thereby confirming a training effect. For Ni-Mn-Ga single crystals, external constraints imposed by gripping the crystal limit lifetime and/or magnetic-field-induced deformation. These constraints are relaxed for foams.

You have full access to the following eBook

Info:

[1] A. Sozinov, A. A. Likhachev, N. Lanska, K. Ullakko: Applied Physics Letters Vol. 80 (2002), p.1746.

Google Scholar

[2] S. J. Murray, M. Marioni, S. M. Allen, R. C. O'Handley, T. A. Lograsso: Applied Physics Letters Vol. 77 (2000), p.886.

Google Scholar

[3] P. Müllner, V. A. Chernenko, G. Kostorz: Journal of Applied Physics Vol. 95 (2004), p.1531.

Google Scholar

[4] M. Chmielus, V. A. Chernenko, W. B. Knowlton, G. Kostorz, P. Müllner: European Physical Journal-Special Topics Vol. 158 (2008), p.79.

DOI: 10.1140/epjst/e2008-00657-3

Google Scholar

[5] M. Marioni, D. Bono, A. B. Banful, M. del Rosario, E. Rodriguez, B. Peterson, S. M. Allen, R. C. O'Handley: Journal De Physique IV Vol. 112 (2003), p.1001.

DOI: 10.1051/jp4:20031050

Google Scholar

[6] P. Lázpita, G. Rojo, J. Gutiérrez, J. M. Barandiarán, R. C. O'Handley: Sensor Letters Vol. 5 (2007), p.65.

Google Scholar

[7] U. Gaitzsch, M. Pötschke, S. Roth, B. Rellinghaus, L. Schultz: Scripta Materialia Vol. 57 (2007), p.493.

DOI: 10.1016/j.scriptamat.2007.05.026

Google Scholar

[8] U. Gaitzsch, M. Pötschke, S. Roth, B. Rellinghaus, L. Schultz: Acta Materialia Vol. 57 (2009), p.365.

DOI: 10.1016/j.actamat.2008.09.017

Google Scholar

[9] U. Gaitzsch, R. Techapiesancharoenkij, M. Pötschke, S. Roth, L. Schultz: IEEE Transactions on Magnetics Vol. 45 (2009), p. (1919).

Google Scholar

[10] J. Tellinen, I. Suorsa, A. Jaaskelainen, I. Aaltio, K. Ullakko, Basic properties of magnetic shape memory actuators, in: Actuator 2002, Wirtschaftsfoerderung Bremen GmbH, Bremen, 2002, pp.566-569.

Google Scholar

[11] P. Müllner, A. V. Chernenko, D. Mukherji, G. Kostorz, Cyclic magnetic-field-induced deformation and magneto-mechanical fatigue of Ni-Mn-Ga ferromagnetic martensite, in: Y. Furuya, E. Quandt, Q. Zhang, K. Inoue, M. Shahinpoor (Eds. ), MRS Fall Meeting 2003, Vol. 785, MRS, Boston, MA, 2003, pp.415-420.

DOI: 10.1557/proc-785-d12.2

Google Scholar

[12] O. Heczko, L. Straka, O. Söderberg, S. P. Hannula, Magnetic shape memory fatigue, in: W. D. Armstrong (Ed. ) Smart Structures and Materials 2005, San Diego, CA, 2005, SPIE Proc. Vol 5761, pp.513-520.

DOI: 10.1117/12.599814

Google Scholar

[13] P. Müllner: Materials Science and Engineering A Vol. 234 (1997), p.94.

Google Scholar

[14] Y. Boonyongmaneerat, M. Chmielus, D. C. Dunand, P. Müllner: Physical Review Letters Vol. 99 (2007), p.247201.

Google Scholar

[15] M. Chmielus, X. X. Zhang, C. Witherspoon, D. C. Dunand, P. Müllner: Nature Materials (2009), published electronically on September 13. DOI: 10. 1038/NMAT2527. In press.

Google Scholar

[16] Y. Boonyongmaneerat, D. C. Dunand: Advanced Engineering Materials Vol. 10 (2008), p.379.

Google Scholar

[17] I. Aaltio, K. Ullakko, Magnetic shape memory (MSM) actuators, in: Actuator 2000, Wirtschaftsfoerderung Bremen GmbH, Bremen, 2000, pp.527-530.

Google Scholar

[18] P. Müllner, V. A. Chernenko, M. Wollgarten, G. Kostorz: Journal of Applied Physics Vol. 92 (2002), p.6708.

Google Scholar

[19] C. Segui, V. A. Chernenko, J. Pons, E. Cesari, V. Khovallo, T. Takagi: Acta Materialia Vol. 53 (2005), p.111.

Google Scholar

[20] K. Ullakko, J. K. Huang, C. Kantner, R. C. OHandley, V. V. Kokorin: Applied Physics Letters Vol. 69 (1996), p. (1966).

Google Scholar

[21] P. Müllner, G. Kostorz: Materials Science Forum Vol. 583 (2008), p.43.

Google Scholar

[22] H. D. Chopra, C. Bailly, M. Wuttig: Acta Materialia Vol. 44 (1996), p.747.

Google Scholar