Magnetically Anisotropic Ni2MnGa Thin Films: Coating Glass and Si Micro-Cantilevers Substrates

Article Preview

Abstract:

Ni2MnGa thin films, with thickness between 30 and 60 nm, were pulsed-laser deposited at room temperature on Si micro-cantilevers and glass substrates. Two different deposition processes were performed: normal deposition and off¬-normal. After annealing in an inert atmosphere, in-plane isotropic magnetic hysteresis loops were measured for the normal deposited films. In contrast, in-plane anisotropic hysteresis loops were obtained from the off-normal deposited ones. An in-plane easy direction for the magnetisation, perpendicular to the incidence plane of the plasma during deposition, was measured with an anisotropy field of ≈100 Oe and an easy coercive field of ≈24 Oe. The mechanical behaviour of the magnetically anisotropic coated micro-cantilevers and their response to a decreasing temperature permitted observing the martensitic transformation of the Ni2MnGa thin films.

You have full access to the following eBook

Info:

[1] K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley, V. V. Kokorin: Appl. Phy. Lett. Vol. 69 (1996), p. (1966).

Google Scholar

[2] R. C. O'Handley, S. J. Murray, M. Marioni, H. Nembach, S. M. Allen: J. Appl. Phys. Vol 87 (2000), p.4712.

Google Scholar

[3] T. Kakeshita, T. Takeuchi, T. Fukuda, T. Saburi, R. Oshima, S. Muto, K. Kishio: Mater. Trans. J. Immunol. Methods Vol. 41 (2000), p.882.

Google Scholar

[4] R. D. James, M. Wuttig: Philos. Mag. Vol. 77 (1998), p.1273.

Google Scholar

[5] K. Oikawa, L. Wulff, T. Iijima, F. Gejima, T. Ohmori, A. Fujita, K. Fukamichi, R. Kainuma, K. Ishida: Appl. Phys. Lett. Vol. 79 (2001), p.3290.

DOI: 10.1063/1.1418259

Google Scholar

[6] M. Wuttig, J. Li, C. Craciunescu: Scr. Mater. Vol. 44 (2001), p.2393.

Google Scholar

[7] P. J. Brown, A. P. Gandy, K. Ishida, R. Kainuma, T. Kanomata, K. -U. Neumann, K. Oikawa, B. Ouladdiaf, K. R. A. Ziebeck: J. Phys. Condens. Matter Vol. 18 (2006), p.2249.

DOI: 10.1088/0953-8984/18/7/012

Google Scholar

[8] Y. Sutou, Y. Imano, N. Koeda, T. Omari, R. Kainuma, K. Ishida, K. Oikawa: Appl. Phys. Lett. Vol. 85 (2004), p.4358.

DOI: 10.1063/1.1808879

Google Scholar

[9] J. M. Barandiarán, J. Gutiérrez, P. Lázpita, V. A. Chernenko, C. Seguí, J. Pons, E. Cesari, K. Oikawa, T. Kanomata: Mater. Sci. Eng. A Vol. 478 (2008), p.125.

DOI: 10.1016/j.msea.2007.05.097

Google Scholar

[10] N. Dearing, A. G. Jenner: IEEE. Trans. Mag. Vol. 42 (2006), p.78.

Google Scholar

[11] J. L. Sánchez Llamazares, B. Hernando, V. M. Prida, C. García, J. González, R. Varga, C. A. Ross: J. Appl. Phys. Vol. 105 (2009), p. 07A945.

Google Scholar

[12] S. K. Wu, K. H. Tseng, J. Y. Wang: Thin Solids Films Vol. 408 (2002), p.316.

Google Scholar

[13] V. A. Chernenko, M. Ohtsuka, M. Kohl, V. V. Khovaiko, T. Takagi: Smart Mater. Struct. Vol. 14 (2005), p. S-245.

Google Scholar

[14] H. Rumpf, C. M. Craciunescu, H. Modrow, Kh. Olimov, E. Quandt, M. Wuttig: J. Magn. Magn. Mater. Vol. 302 (2006), p.421.

Google Scholar

[15] F. J. Castaño, B. Nelson-Cheeseman, R. C. O'Handley, C. A. Ross, C. Redondo, F. Castaño: J. Appl. Phys. 93 (2003), p.8492.

Google Scholar

[16] A. Hakola, O. Heczko, A. Jaakkola, T. Kajava, K. Ullakko: Appl. Surf. Sci. Vol. 238 (2004), p.155.

Google Scholar

[17] T. J. Zhu, L. Lu, M. O. Lai, J. Ding: Smart Mater. Struct. Vol. 14 (2005), p. S293.

Google Scholar

[18] A. Sozinov, A. A. Likhachev, N. Lanska, K. Ullakko: Appl. Phys. Lett. Vol. 80 (2002), p.1746.

Google Scholar

[19] M. Kohl, D. Brugger, M. Ohtsuka, T. Takagi: Sensors and Actuators A Vol. 114 (2004), p.445.

Google Scholar

[20] R. Techapiesancharoenkij, J. Kostamo, S. M. Allen, R. C. O'Handley: J. Appl. Phys. Vol. 105 (2009), p.093923.

Google Scholar

[21] J. -P. Ahn, N. Cheng, T. Lograsso, K. M. Krishnan: IEEE Trans. Magn. Vol. 37 (2001), p.2141.

Google Scholar

[22] P. G. Tello, F. J. Castaño, R. C. O'Handley, S. M. Allen, M. Esteve, F. Castaño, A. Labarta, X. Battle: J. Appl. Phys. Vol. 91 (2002), p.8234.

Google Scholar

[23] J. Dubovik, I. Góscianska, Y. V. Kudryavtsev, Y. P. Lee, P. Sovák, M. Kone: Phys. Stat. Sol. (c) Vol. 3 (2006), p.143.

Google Scholar

[24] G. Binnig, C. F. Quate, Ch. Gerber: Phys. Rev. Lett. Vol. 56 (1986), p.931.

Google Scholar

[25] J. Moreland: J. Phys. D: Appl. Phys. Vol. 36 (2003), p. R39.

Google Scholar

[26] P.S. Waggoner, H.G. Craighead: Lab on a chip. Vol. 7 (2007), p.1238.

Google Scholar

[27] S. M. Goedeke, S. W. Allison, P. G. Datskos: Sensors and Actuators A Vol. 112 (2004), p.32.

Google Scholar

[28] T. M. Wallis, J. Moreland, P. Kabos: Appl. Phys. Lett. Vol. 89 (2006), p.122502.

Google Scholar

[29] V. Madurga, J. Vergara, C. Favieres: proceedings of the Joint European Magnetic Symposium 2008; submitted to J. Magn. Magn. Mater.

Google Scholar

[30] M. Wuttig, C. Craciunescu, J. Li: Materials Transactions, JIM, Vol. 41 (2000), p.933.

Google Scholar

[31] M. Kohl, A. Agarwal, V. A. Chernenko, M. Ohtsuka, K. Seemann: Mater. Sci. Eng. A Vol. 438 (2006), p.940.

Google Scholar

[32] T. G. Knorr and R. W. Hoffman: Phys. Rev. Vol. 113 (1959), p.1039.

Google Scholar

[33] D. O. Smith: J. Appl. Phys. Vol. 30, (1959), p 264S.

Google Scholar

[34] D. O. Smith, M. S. Cohen G.P. Weiss: J. Appl. Phys. Vol. 60 (1960), p.1755.

Google Scholar

[35] S. van Dijken, G. Di Santo and B. Poelsem: Phys. Rev. Vol. 63 (2001), p.104431.

Google Scholar

[36] J. M. Alameda, F. Carmona, F. H. Salas, L. M. Álvarez-Prado, R. Morales and G. T. Pérez: J. Magn. Magn. Mater Vol. 154 (1996), p.249.

Google Scholar

[37] T. Nozawa, F. Morimoto, R. Harazono and N. Nouchi: J. Magn. Magn. Mater Vol. 304 (2006), p. e672.

Google Scholar

[38] M. Labrune, S. Hamzaoui and I. B. Puchalska: J. Magn. Magn. Mater Vol. 27 (1982), p.323.

Google Scholar

[39] V. Madurga, J. Vergara, C. Favieres, J. Magn. Magn. Mater. Vol. 272-276 (2004), p.1681.

Google Scholar

[40] V. Madurga, J. Vergara, C. Favieres: C Int. Conf. TNT 2005 Trends in �anotechnology, (Oviedo, Spain, 29 August - 2 September 2005).

Google Scholar