Lead Free CaTiO3-Based Ceramics: Sintering, Phase Transitions and Dielectric Properties

Article Preview

Abstract:

Various chemical compositions (1-x)CaTiO3+xMgF2+xLiF were prepared and dry-ground. The powder mixtures were pressed to pellets and co-fired at 900°C for 2h. The obtained ceramics were investigated by XRD, SEM, DSC and dielectric measurements. A new solid solution with nominal composition Ca1-xMgx(Ti1-xLix)O3-3xF3x occurred in the initial composition range 0 ≤ x ≤ 0.25. The fluoride additive MgF2+LiF lowered significantly the sintering temperature of pure CaTiO3. Above room temperature, one or two second order phase transitions were detected by DSC and confirmed by dielectric measurements. Moreover, below room temperature, a frequency peak dependent on the permittivity and losses was observed and the quantum paraelectric behaviour of CaTiO3 disappeared with increasing x. These oxifluorides could be of interest for electronic applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

111-118

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Buchal and M. Siegert: Integr. Ferroelectrics Vol. 35 (2001), p.1.

Google Scholar

[2] J.F. Scott: Mater. Sci. Eng. Vol. B 120 (2005), p.6.

Google Scholar

[3] N.R. Harris, M. Hill, R. Torah, R. Townsend, S.P. Beeby, N.M. White and J. Ding: Sensors and Actuators Vol. A. 132 (2006), p.311.

DOI: 10.1016/j.sna.2006.06.006

Google Scholar

[4] E. Ringgaard and T. Wurlitzer: J. Eur. Ceram. Soc. Vol. 25 (2005) p.2701.

Google Scholar

[5] D.M. Levins, K.D. Reeve , W.J. Buykx, R.K. Ryan, B.W. Seatonberry, J.L. Woolfrey and P. Hart: American Nuclear Societ Int Meeting on Waste Management, Niagara Falls, NY., September (1986).

Google Scholar

[6] A.G. Andersen, T. Hayakawa, T. Tsunoda, H. Orita, M. Shimizu and K. Takehira: Catalysis Lett. Vol. 18 (1993), p.37.

Google Scholar

[7] Y. Higuchi, Y. Sugimoto, J. Harada and H. Tamura: J. Euro. Ceram. Soc. Vol. 27 (2007), p.2785.

Google Scholar

[8] C.F. Tseng, C.L. Huang and W.R. Yang: Materials Letters Vol. 61 (2007), p.4054.

Google Scholar

[9] V.V. Lemanov, A.V. Sotnikov, E.P. Smirnova, M. Weihnacht and R. Kunze: Solid State Comm. Vol. 110 (1999), p.611.

DOI: 10.1016/s0038-1098(99)00153-2

Google Scholar

[10] V. Zelezny, E. Cockayne, J. Petzelt, M.F. Limonov, D.E. Usvyat, V.V. Lemanov, A.A. Volkov: Phys. Rev. Vol. B66 (2002), p.224303.

Google Scholar

[11] A. Chandra and D. Pandey : J. Mater. Res. Vol. 18 (2003), p.413.

Google Scholar

[12] H. Yamamura, N. Okitsu and K. Kakinuma: J. Cer. Soc. Jpn. Vol. 114 (2006), p.1160.

Google Scholar

[13] B.J. Kennedy, C.J. Howard and B.C. Chakoumakos: J. Phys. Condens. Matter Vol. 11 (1999), p.1479.

Google Scholar

[14] A. Roushown and Y. Masamoto: J. Solid State Chem. Vol. 78 (2005), p.2867.

Google Scholar

[15] R.D. Shannon: Acta. Cryst. Vol. A32 (1976), p.751.

Google Scholar

[16] A. Benziada-Taïbi, J. Ravez, P. Hagenmuller: J. Fluor. Chem. Vol. 26 (1984), p.395.

Google Scholar

[17] J. Ravez, J.P. Chaminade, T. Sekya, A. Benziada, C. Houttemane and M. Pouchard: Jpn. J. Appl. Phys. Vol. 24 (1985), p.430.

DOI: 10.7567/jjaps.24s2.430

Google Scholar

[18] L. Benziada, J.P. Bonnet, C. Denage, N. Puyco-Castaings, J. Ravez, A. Simon, R. Von Der Mühll, Z.G. Ye: Réunion Française de Ferroélectricité, Orléans, France, 19 Septembre, (1988).

Google Scholar

[19] D. Talantikite, L. Taibi- Benziada: Solid State Sciences Vol. 11 (2009), p.151.

Google Scholar