Influence of Oxygen Stoichiometry and Cation Ordering on Magnetoresistive Properties of Sr2FeMoO6±δ

Article Preview

Abstract:

This work investigates the influence of initial compound synthesis prehistory on the phase sequence during formation of single-phase Sr2FeMoO6 (SFMO). Analytical-grade SrCO3, Fe2O3 and MoO3 (sample No.1) and partially reduced precursors of SrFeO3-x (SFO) and SrMoO4-y (SMO) (sample No.2) were used as initial reagents. In the latter case, kinetic limitations of SFMO phase formation are resolved by increasing the diffusivity of both of Fe3+ and Mo5+ and decreasing diffusion lengths to the reaction zone. This enhances the double-perovskite growth rate, lowers synthesis temperature and increases the intensity of X-ray reflections of (011) and (013) planes suggesting a superstructural ordering of Fe3+ and Mo5+ cations. Samples No.1 and No.2 have both a Тс ~ 420K while the magnetization value at 77 K in the sample No.2 is higher by a factor 2.3 compared to that of sample No.1. A decrease of the oxygen vacancy concentration by annealing Sr2FeMoO5.82 lowered magnetization of the samples and promoted the formation of a second magnetic phase with Тс = 700 К. We suppose that an increase of oxygen partial pressure during annealing causes formation of clusters with antiferromagnetic coupling in Fe3+-О2--Fe3+ chains. In order to increase the magnetoresistive effect at temperatures relevant for technical application, weak intergrain bonds should be formed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

338-343

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.K. Patterson, C.W. Moeller and R. Ward: Inorg. Chem. 2 (1963), p.196.

Google Scholar

[2] C.L. Yuan, S.G. Wang, W.H. Song, T. Yu, J.M. Dai, S.L. Ye and Y.P. Sun: Appl. Phys. Lett. 75 (1999), p.3853.

Google Scholar

[3] K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura and Y. Tokura: Nature 395 (1998), p.677.

Google Scholar

[4] D. Sánchez, J.A. Alonso, M. García-Hernández, M.J. Martínez-Lope, J.L. Martínez and A. Mellergard: Phys. Rev. B 65 (2002), p.104426.

Google Scholar

[5] O. Chmaissem, R. Kruk, B. Dabrowski, D.E. Brown, X. Xiong, S. Kolesnik, J.D. Jorgensen and C.W. Kimbal: Phys. Rev. B 62 (2000), p.14197.

Google Scholar

[6] M.K. Chung, P.J. Huang, W. -H. Li, C.C. Yang, T.S. Chan, R.S. Liu, S.Y. Wu and J.W. Lynn: Physica B 385-386 (2006), p.418.

Google Scholar

[7] D.D. Sarma, P. Mahadevan, T. Saha-Dasgupta, S. Ray and A. Kumar: Phys. Rev. Lett. 85 (2000), p.2549.

Google Scholar

[8] M. Itoh, I. Ohta and Y. Inaguma: Mater. Sci. Eng. B 41 (1996), p.55.

Google Scholar

[9] Y. Tomioka, T. Okuda, Y. Okimoto, R. Kumai, K. -I. Kobayashi and Y. Tokura: Phys. Rev. B 61 (2000), p.422.

Google Scholar

[10] L. l. Balcells, J. Navarro, M. Bibes, A. Roig, B. Martínez and J. Fontcuberta: Appl. Phys. Lett. 78 (2001), p.781.

DOI: 10.1063/1.1346624

Google Scholar

[11] J. Rager, M. Zipperle, A. Sharma and J.L. MacManus-Driscoll: J. Am. Ceram. Soc. 87 (2004), p.1330.

Google Scholar

[12] T. -T. Fang, M.S. Wu and T.F. Ko: J. Mat. Sci. Lett. 20 (2001), p.1609.

Google Scholar

[13] A.S. Ogale, S.B. Ogale, R. Ramesh and T. Venkatessan: Appl. Phys. Lett. 75 (1999), p.537.

Google Scholar

[14] Y. Takeda, K. Kanno, T. Takada, O. Yamamoto, M. Takano, N. Nakayama and Y. Bando: J. Solid State Chem. 63 (1986), p.237.

DOI: 10.1016/0022-4596(86)90174-x

Google Scholar

[15] M. Watahiki, J. Suzuki, Y. Tomioka and Y. Tokura: J. Phys. Soc. Jpn. 70 Suppl. A (2001), p.67.

Google Scholar